Suppr超能文献

可靠的支持:测量似然比的校准。

Reliable support: Measuring calibration of likelihood ratios.

机构信息

Research Institute on Forensic Science (ICFS), ATVS, Biometric Recognition Group, Escuela Politecnica Superior, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 11, E-28049 Madrid, Spain.

出版信息

Forensic Sci Int. 2013 Jul 10;230(1-3):156-69. doi: 10.1016/j.forsciint.2013.04.014. Epub 2013 May 10.

Abstract

Calculation of likelihood ratios (LR) in evidence evaluation still presents major challenges in many forensic disciplines: for instance, an incorrect selection of databases, a bad choice of statistical models, low quantity and bad quality of the evidence are factors that may lead to likelihood ratios supporting the wrong proposition in a given case. However, measuring performance of LR values is not straightforward, and adequate metrics should be defined and used. With this objective, in this work we describe the concept of calibration, a property of a set of LR values. We highlight that some desirable behavior of LR values happens if they are well calibrated. Moreover, we propose a tool for representing performance, the Empirical Cross-Entropy (ECE) plot, showing that it can explicitly measure calibration of LR values. We finally describe some examples using speech evidence, where the usefulness of ECE plots and the measurement of calibration is shown.

摘要

在许多法医学科中,证据评估中的似然比(LR)计算仍然存在重大挑战:例如,数据库选择不正确、统计模型选择不当、证据数量少且质量差,这些因素都可能导致似然比在给定情况下支持错误的主张。然而,测量 LR 值的性能并不简单,应该定义和使用适当的指标。为此,在这项工作中,我们描述了校准的概念,即一组 LR 值的属性。我们强调,如果 LR 值经过良好校准,它们就会表现出一些理想的行为。此外,我们提出了一种用于表示性能的工具,即经验交叉熵(ECE)图,表明它可以明确地测量 LR 值的校准。最后,我们使用语音证据描述了一些示例,展示了 ECE 图的有用性和校准的测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验