Ramos Daniel, Franco-Pedroso Javier, Lozano-Diez Alicia, Gonzalez-Rodriguez Joaquin
AuDIaS-Audio, Data Intelligence and Speech, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente 11, 28049 Madrid, Spain.
Entropy (Basel). 2018 Mar 20;20(3):208. doi: 10.3390/e20030208.
In this work, we analyze the cross-entropy function, widely used in classifiers both as a performance measure and as an optimization objective. We contextualize cross-entropy in the light of Bayesian decision theory, the formal probabilistic framework for making decisions, and we thoroughly analyze its motivation, meaning and interpretation from an information-theoretical point of view. In this sense, this article presents several contributions: First, we explicitly analyze the contribution to cross-entropy of (i) prior knowledge; and (ii) the value of the features in the form of a likelihood ratio. Second, we introduce a decomposition of cross-entropy into two components: discrimination and calibration. This decomposition enables the measurement of different performance aspects of a classifier in a more precise way; and justifies previously reported strategies to obtain reliable probabilities by means of the calibration of the output of a discriminating classifier. Third, we give different information-theoretical interpretations of cross-entropy, which can be useful in different application scenarios, and which are related to the concept of reference probabilities. Fourth, we present an analysis tool, the Empirical Cross-Entropy (ECE) plot, a compact representation of cross-entropy and its aforementioned decomposition. We show the power of ECE plots, as compared to other classical performance representations, in two diverse experimental examples: a speaker verification system, and a forensic case where some glass findings are present.
在这项工作中,我们分析了交叉熵函数,它在分类器中被广泛用作性能度量和优化目标。我们根据贝叶斯决策理论(用于决策的形式化概率框架)对交叉熵进行情境化,并从信息论的角度深入分析其动机、含义和解释。从这个意义上讲,本文有以下几个贡献:第一,我们明确分析了(i)先验知识;以及(ii)以似然比形式表示的特征值对交叉熵的贡献。第二,我们将交叉熵分解为两个分量:区分度和校准度。这种分解能够更精确地衡量分类器的不同性能方面;并证明了先前报道的通过校准区分性分类器的输出以获得可靠概率的策略。第三,我们给出了交叉熵的不同信息论解释,这些解释在不同的应用场景中可能有用,并且与参考概率的概念相关。第四,我们提出了一种分析工具,即经验交叉熵(ECE)图,它是交叉熵及其上述分解的一种简洁表示。在两个不同的实验示例中,我们展示了与其他经典性能表示相比,ECE图的强大之处:一个说话人验证系统,以及一个存在一些玻璃物证的法医案例。