Suppr超能文献

肽吸附对信号线性度的影响及提高定量可靠性的简单方法。

The effect of peptide adsorption on signal linearity and a simple approach to improve reliability of quantification.

机构信息

Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.

出版信息

J Proteomics. 2013 Jun 24;85:160-4. doi: 10.1016/j.jprot.2013.04.034. Epub 2013 May 9.

Abstract

UNLABELLED

Peptide quantification using MS often relies on the comparison of peptide signal intensities between different samples, which is based on the assumption that observed signal intensity has a linear relationship to peptide abundance. A typical proteomics experiment is subject to multiple sources of variance, so we focussed here on properties affecting peptide linearity under simple, well-defined conditions. Peptides from a standard protein digest were analysed by multiple reaction monitoring (MRM) MS to determine peptide linearity over a range of concentrations. We show that many peptides do not display a linear relationship between signal intensity and amount under standard conditions. Increasing the organic content of the sample solvent increased peptide linearity by increasing the accuracy and precision of quantification, which suggests that peptide non-linearity is due to concentration-dependent surface adsorption. Using multiple peptides at various dilutions, we show that peptide non-linearity is related to observed retention time and predicted hydrophobicity. Whereas the effect of adsorption on peptide storage has been investigated previously, here we demonstrate the deleterious effect of peptide adsorption on the quantification of fresh samples, highlight aspects of sample preparation that can minimise the effect, and suggest bioinformatic approaches to enhance the selection of peptides for quantification.

BIOLOGICAL SIGNIFICANCE

Accurate quantification is central to many aspects of science, especially those examining dynamic processes or comparing molecular stoichiometries. In biological research, the quantification of proteins is an important yet challenging objective. Large-scale quantification of proteins using MS often depends on the comparison of peptide intensities with only a single-level calibrant (as in stable isotope labelling and absolute quantification approaches) or no calibrants at all (as in label-free approaches). For these approaches to be reliable, it is essential that the relationship between signal intensity and concentration is linear, without a significant intercept. Here, we show that peptide adsorption can severely affect this relationship, even under controlled conditions, and we demonstrate simple methodologies that can be used to moderate and predict this effect. These findings thus enable the quantification of proteins with increased robustness and reliability.

摘要

未加标签

使用 MS 进行肽定量分析通常依赖于比较不同样品之间的肽信号强度,这是基于这样的假设,即观察到的信号强度与肽丰度呈线性关系。典型的蛋白质组学实验受到多种来源的差异的影响,因此我们在这里重点研究在简单、明确定义的条件下影响肽线性度的特性。使用多重反应监测 (MRM) MS 分析来自标准蛋白质消化物的肽,以确定在一系列浓度下肽的线性度。我们表明,在标准条件下,许多肽的信号强度与数量之间没有线性关系。增加样品溶剂中的有机含量通过提高定量的准确性和精密度来增加肽的线性度,这表明肽的非线性是由于浓度依赖性的表面吸附。使用各种稀释度的多个肽,我们表明肽的非线性与观察到的保留时间和预测的疏水性有关。虽然以前已经研究了吸附对肽储存的影响,但在这里我们证明了肽吸附对新鲜样品定量的有害影响,突出了可以最小化这种影响的样品制备方面,并提出了生物信息学方法来增强对定量用肽的选择。

生物学意义

准确的定量是科学的许多方面的核心,特别是那些研究动态过程或比较分子化学计量的方面。在生物研究中,蛋白质的定量是一个重要但具有挑战性的目标。使用 MS 对蛋白质进行大规模定量通常依赖于仅使用单级校准剂(如稳定同位素标记和绝对定量方法)或根本不使用校准剂(如无标记方法)比较肽强度。为了使这些方法可靠,信号强度与浓度之间的关系必须是线性的,没有显著的截距。在这里,我们表明,即使在受控条件下,肽吸附也会严重影响这种关系,并且我们展示了可以用来缓和和预测这种影响的简单方法。这些发现使蛋白质的定量更具稳健性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5727/3694305/90113e484a03/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验