Suppr超能文献

通过对乳球菌噬菌体 Q33 和 BM13 的分子分析鉴定出一个新的 P335 亚群。

Identification of a new P335 subgroup through molecular analysis of lactococcal phages Q33 and BM13.

机构信息

Department of Microbiology, University College Cork, Cork, Ireland.

出版信息

Appl Environ Microbiol. 2013 Jul;79(14):4401-9. doi: 10.1128/AEM.00832-13. Epub 2013 May 10.

Abstract

Lactococcal dairy starter strains are under constant threat from phages in dairy fermentation facilities, especially by members of the so-called 936, P335, and c2 species. Among these three phage groups, members of the P335 species are the most genetically diverse. Here, we present the complete genome sequences of two P335-type phages, Q33 and BM13, isolated in North America and representing a novel lineage within this phage group. The Q33 and BM13 genomes exhibit homology, not only to P335-type, but also to elements of the 936-type phage sequences. The two phage genomes also have close relatedness to phages infecting Enterococcus and Clostridium, a heretofore unknown feature among lactococcal P335 phages. The Q33 and BM13 genomes are organized in functionally related clusters with genes encoding functions such as DNA replication and packaging, morphogenesis, and host cell lysis. Electron micrographic analysis of the two phages highlights the presence of a baseplate more reminiscent of the baseplate of 936 phages than that of the majority of members of the P335 group, with the exception of r1t and LC3.

摘要

乳球菌乳制品发酵剂菌株经常受到乳制品发酵设施中噬菌体的威胁,尤其是所谓的 936、P335 和 c2 种成员的噬菌体。在这三个噬菌体群中,P335 种的成员具有最多的遗传多样性。在这里,我们展示了两种在北美分离的 P335 型噬菌体 Q33 和 BM13 的完整基因组序列,它们代表了该噬菌体群中的一个新谱系。Q33 和 BM13 基因组不仅与 P335 型噬菌体,而且与 936 型噬菌体序列的元素具有同源性。这两种噬菌体基因组也与感染肠球菌和梭菌的噬菌体密切相关,这是乳球菌 P335 噬菌体中以前未知的特征。Q33 和 BM13 基因组在功能相关的簇中组织,这些簇包含编码 DNA 复制和包装、形态发生和宿主细胞裂解等功能的基因。对这两种噬菌体的电子显微镜分析突出了存在一个基板,它更类似于 936 噬菌体的基板,而不是大多数 P335 组的成员的基板,除了 r1t 和 LC3。

相似文献

1
Identification of a new P335 subgroup through molecular analysis of lactococcal phages Q33 and BM13.
Appl Environ Microbiol. 2013 Jul;79(14):4401-9. doi: 10.1128/AEM.00832-13. Epub 2013 May 10.
2
Genetic and functional characterisation of the lactococcal P335 phage-host interactions.
BMC Genomics. 2017 Feb 10;18(1):146. doi: 10.1186/s12864-017-3537-5.
6
Multiplex PCR for detection and identification of lactococcal bacteriophages.
Appl Environ Microbiol. 2000 Mar;66(3):987-94. doi: 10.1128/AEM.66.3.987-994.2000.
7
Biodiversity and classification of lactococcal phages.
Appl Environ Microbiol. 2006 Jun;72(6):4338-46. doi: 10.1128/AEM.02517-05.
9
Longitudinal Study of Phages in a Canadian Cheese Factory.
Appl Environ Microbiol. 2023 May 31;89(5):e0042123. doi: 10.1128/aem.00421-23. Epub 2023 Apr 19.
10
Characterization of Lactococcus lactis phage 949 and comparison with other lactococcal phages.
Appl Environ Microbiol. 2010 Oct;76(20):6843-52. doi: 10.1128/AEM.00796-10. Epub 2010 Aug 27.

引用本文的文献

1
Longitudinal Study of Phages in a Canadian Cheese Factory.
Appl Environ Microbiol. 2023 May 31;89(5):e0042123. doi: 10.1128/aem.00421-23. Epub 2023 Apr 19.
2
Exploring Structural Diversity among Adhesion Devices Encoded by Lactococcal P335 Phages with AlphaFold2.
Microorganisms. 2022 Nov 16;10(11):2278. doi: 10.3390/microorganisms10112278.
3
Impact of a phage cocktail targeting and as members of a gut bacterial consortium and .
Front Microbiol. 2022 Jul 22;13:936083. doi: 10.3389/fmicb.2022.936083. eCollection 2022.
4
Phage endolysins are adapted to specific hosts and are evolutionarily dynamic.
PLoS Biol. 2022 Aug 1;20(8):e3001740. doi: 10.1371/journal.pbio.3001740. eCollection 2022 Aug.
5
Expanding Diversity of Single-Strand Annealing Proteins: A Putative Role of Bacteriophage-Host Arms Race.
Front Microbiol. 2021 Apr 20;12:644622. doi: 10.3389/fmicb.2021.644622. eCollection 2021.
6
Choice of assembly software has a critical impact on virome characterisation.
Microbiome. 2019 Jan 28;7(1):12. doi: 10.1186/s40168-019-0626-5.
7
A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the M17PTZA496.
Viruses. 2018 Dec 22;11(1):7. doi: 10.3390/v11010007.
10
Reproducible protocols for metagenomic analysis of human faecal phageomes.
Microbiome. 2018 Apr 10;6(1):68. doi: 10.1186/s40168-018-0446-z.

本文引用的文献

1
Phages of lactic acid bacteria: the role of genetics in understanding phage-host interactions and their co-evolutionary processes.
Virology. 2012 Dec 20;434(2):143-50. doi: 10.1016/j.virol.2012.10.008. Epub 2012 Oct 22.
2
Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism.
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8954-8. doi: 10.1073/pnas.1200966109. Epub 2012 May 18.
3
Isolation of a virulent Lactobacillus brevis phage and its application in the control of beer spoilage.
J Food Prot. 2011 Dec;74(12):2157-61. doi: 10.4315/0362-028X.JFP-11-262.
5
Characterization of Lactococcus lactis phage 949 and comparison with other lactococcal phages.
Appl Environ Microbiol. 2010 Oct;76(20):6843-52. doi: 10.1128/AEM.00796-10. Epub 2010 Aug 27.
6
Structure of lactococcal phage p2 baseplate and its mechanism of activation.
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6852-7. doi: 10.1073/pnas.1000232107. Epub 2010 Mar 29.
7
Evolution of Lactococcus lactis phages within a cheese factory.
Appl Environ Microbiol. 2009 Aug;75(16):5336-44. doi: 10.1128/AEM.00761-09. Epub 2009 Jun 19.
8
P087, a lactococcal phage with a morphogenesis module similar to an Enterococcus faecalis prophage.
Virology. 2009 May 25;388(1):49-56. doi: 10.1016/j.virol.2009.03.011. Epub 2009 Apr 5.
9
Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis.
Appl Environ Microbiol. 2008 Aug;74(15):4636-44. doi: 10.1128/AEM.00118-08. Epub 2008 Jun 6.
10
MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.
Brief Bioinform. 2008 Jul;9(4):299-306. doi: 10.1093/bib/bbn017. Epub 2008 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验