Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
Mol Med. 2013 Jul 24;19(1):124-34. doi: 10.2119/molmed.2012.00343.
Disorders of the oxidative phosphorylation (OXPHOS) system frequently result in a severe multisystem disease with the consequence of early childhood death. Among these disorders, isolated complex I deficiency is the most frequently diagnosed, accounting for one-third of all cases of respiratory chain deficiency. We chose to focus on complex I deficiency, caused by mutation in the assembly factor chromosome 6, open reading frame 66 (C6ORF66; NADH dehydrogenase [ubiquinone] complex I assembly factor 4 [NDUFAF4]) protein. We used the approach of cell- and organelle-directed protein/enzyme replacement therapy, with the transactivator of transcription (TAT) peptide as the moiety delivery system. This step will enable us to deliver the wild-type assembly factor C6ORF66 into patient cells and their mitochondria, leading to the proper assembly and function of complex I and, as a result, to a functional OXPHOS system. We designed and constructed the TAT-ORF fusion protein by gene fusion techniques, expressed the protein in an Escherichia coli expression system and highly purified it. Our results indicate that TAT-ORF enters patients' cells and their mitochondria rapidly and efficiently. TAT-ORF is biologically active and led to an increase in complex I activity. TAT-ORF also increased the number of patient cells and improved the activity of their mitochondria. Moreover, we observed an increase in ATP production, a decrease in the content of mitochondria and a decrease in the level of reactive oxygen species. Our results suggest that this approach of protein replacement therapy for the treatment of mitochondrial disorders is a promising one.
氧化磷酸化(OXPHOS)系统的紊乱常导致严重的多系统疾病,导致儿童早期死亡。在这些疾病中,孤立的复合物 I 缺乏症是最常见的诊断,占呼吸链缺乏症的三分之一。我们选择专注于复合物 I 缺乏症,其由染色体 6 组装因子开放阅读框 66(C6ORF66;NADH 脱氢酶 [泛醌] 复合物 I 组装因子 4 [NDUFAF4])蛋白的突变引起。我们使用细胞和细胞器定向蛋白/酶替代治疗方法,使用转录激活因子(TAT)肽作为部分递送系统。这一步将使我们能够将野生型组装因子 C6ORF66 递送到患者细胞及其线粒体中,导致复合物 I 的正确组装和功能,从而导致功能正常的 OXPHOS 系统。我们通过基因融合技术设计并构建了 TAT-ORF 融合蛋白,在大肠杆菌表达系统中表达该蛋白并进行了高度纯化。我们的结果表明,TAT-ORF 快速有效地进入患者细胞及其线粒体。TAT-ORF 具有生物活性,导致复合物 I 活性增加。TAT-ORF 还增加了患者细胞的数量并改善了其线粒体的活性。此外,我们观察到 ATP 产量增加,线粒体含量减少,活性氧水平降低。我们的结果表明,这种用于治疗线粒体疾病的蛋白质替代治疗方法具有广阔的前景。