Suppr超能文献

后生动物肽信号系统的分子进化。

Molecular evolution of peptidergic signaling systems in bilaterians.

机构信息

Unité propre de Recherche 3294, Centre National de la Recherche Scientifique and Institut National de la Recherche Agronomique, 91198 Gif-sur-Yvette, France.

出版信息

Proc Natl Acad Sci U S A. 2013 May 28;110(22):E2028-37. doi: 10.1073/pnas.1219956110. Epub 2013 May 13.

Abstract

Peptide hormones and their receptors are widespread in metazoans, but the knowledge we have of their evolutionary relationships remains unclear. Recently, accumulating genome sequences from many different species have offered the opportunity to reassess the relationships between protostomian and deuterostomian peptidergic systems (PSs). Here we used sequences of all human rhodopsin and secretin-type G protein-coupled receptors as bait to retrieve potential homologs in the genomes of 15 bilaterian species, including nonchordate deuterostomian and lophotrochozoan species. Our phylogenetic analysis of these receptors revealed 29 well-supported subtrees containing mixed sets of protostomian and deuterostomian sequences. This indicated that many vertebrate and arthropod PSs that were previously thought to be phyla specific are in fact of bilaterian origin. By screening sequence databases for potential peptides, we then reconstructed entire bilaterian peptide families and showed that protostomian and deuterostomian peptides that are ligands of orthologous receptors displayed some similarity at the level of their primary sequence, suggesting an ancient coevolution between peptide and receptor genes. In addition to shedding light on the function of human G protein-coupled receptor PSs, this work presents orthology markers to study ancestral neuron types that were probably present in the last common bilaterian ancestor.

摘要

肽激素及其受体在后生动物中广泛存在,但我们对其进化关系的了解仍不清楚。最近,来自许多不同物种的大量基因组序列的积累为重新评估原口动物和后口动物肽能系统(PSs)之间的关系提供了机会。在这里,我们使用所有人类视紫红质和分泌素型 G 蛋白偶联受体的序列作为诱饵,在包括非脊索动物后口动物和担轮动物门的 15 种两侧对称动物的基因组中检索潜在的同源物。我们对这些受体的系统发育分析揭示了 29 个支持良好的亚树,其中包含混合的原口动物和后口动物序列。这表明,以前被认为是特定门的许多脊椎动物和节肢动物 PS 实际上是两侧对称动物的起源。通过为潜在肽筛选序列数据库,我们随后重建了整个两侧对称肽家族,并表明作为同源受体配体的原口动物和后口动物肽在其一级序列水平上具有一定的相似性,这表明肽和受体基因之间存在古老的共同进化。除了阐明人类 G 蛋白偶联受体 PS 的功能外,这项工作还提供了研究可能存在于最后共同的两侧对称动物祖先中的祖先神经元类型的同系物标记。

相似文献

1
Molecular evolution of peptidergic signaling systems in bilaterians.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):E2028-37. doi: 10.1073/pnas.1219956110. Epub 2013 May 13.
2
Prevertebrate Local Gene Duplication Facilitated Expansion of the Neuropeptide GPCR Superfamily.
Mol Biol Evol. 2015 Nov;32(11):2803-17. doi: 10.1093/molbev/msv179. Epub 2015 Sep 3.
3
Evolutionary history of the neuropeptide S receptor/neuropeptide S system.
Gen Comp Endocrinol. 2014 Dec 1;209:11-20. doi: 10.1016/j.ygcen.2014.05.011. Epub 2014 May 20.
5
The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates.
Front Endocrinol (Lausanne). 2014 Jun 19;5:93. doi: 10.3389/fendo.2014.00093. eCollection 2014.
6
Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca.
Mol Cell Endocrinol. 2024 May 15;586:112192. doi: 10.1016/j.mce.2024.112192. Epub 2024 Feb 24.
7
Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia.
Gen Comp Endocrinol. 2014 Dec 1;209:35-49. doi: 10.1016/j.ygcen.2014.07.009. Epub 2014 Jul 21.
8
The evolution and nomenclature of GnRH-type and corazonin-type neuropeptide signaling systems.
Gen Comp Endocrinol. 2018 Aug 1;264:64-77. doi: 10.1016/j.ygcen.2017.06.007. Epub 2017 Jun 13.
10
Remarkable similarities between the hemichordate (Saccoglossus kowalevskii) and vertebrate GPCR repertoire.
Gene. 2013 Sep 10;526(2):122-33. doi: 10.1016/j.gene.2013.05.005. Epub 2013 May 15.

引用本文的文献

1
Mapping and decoding neuropeptide signaling networks in nervous system function.
Curr Opin Neurobiol. 2025 Jun;92:103027. doi: 10.1016/j.conb.2025.103027. Epub 2025 Apr 21.
2
Sensory plasticity caused by up-down regulation encodes the information of short-term learning and memory.
iScience. 2025 Mar 13;28(4):112215. doi: 10.1016/j.isci.2025.112215. eCollection 2025 Apr 18.
4
Discovery and functional characterization of a bombesin-type neuropeptide signaling system in an invertebrate.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2420966122. doi: 10.1073/pnas.2420966122. Epub 2025 Mar 28.
6
Triggering and modulation of a complex behavior by a single peptidergic command neuron in .
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2420452122. doi: 10.1073/pnas.2420452122. Epub 2025 Mar 14.
7
Comparative Perspectives on Neuropeptide Function and Social Isolation.
Biol Psychiatry. 2025 May 15;97(10):942-952. doi: 10.1016/j.biopsych.2025.01.019. Epub 2025 Jan 30.
8
Neuropeptide-mediated temporal sensory filtering in a primordial nervous system.
bioRxiv. 2024 Dec 17:2024.12.17.628859. doi: 10.1101/2024.12.17.628859.
9
Evolutionary scenarios for the specific recognition of nonhomologous endogenous peptides by G protein-coupled receptor paralogs.
J Biol Chem. 2025 Feb;301(2):108125. doi: 10.1016/j.jbc.2024.108125. Epub 2024 Dec 25.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
2
Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution.
Nat Genet. 2013 Apr;45(4):415-21, 421e1-2. doi: 10.1038/ng.2568. Epub 2013 Feb 24.
3
A pharmacological organization of G protein-coupled receptors.
Nat Methods. 2013 Feb;10(2):140-6. doi: 10.1038/nmeth.2324. Epub 2013 Jan 6.
4
Insights into bilaterian evolution from three spiralian genomes.
Nature. 2013 Jan 24;493(7433):526-31. doi: 10.1038/nature11696. Epub 2012 Dec 19.
5
Evolution of dopamine receptor genes of the D1 class in vertebrates.
Mol Biol Evol. 2013 Apr;30(4):833-43. doi: 10.1093/molbev/mss268. Epub 2012 Nov 28.
6
Peptide neuromodulation in invertebrate model systems.
Neuron. 2012 Oct 4;76(1):82-97. doi: 10.1016/j.neuron.2012.08.035.
7
The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus.
Gen Comp Endocrinol. 2012 Dec 1;179(3):331-44. doi: 10.1016/j.ygcen.2012.09.009. Epub 2012 Sep 28.
8
Molecular evolution of the neuropeptide S receptor.
PLoS One. 2012;7(3):e34046. doi: 10.1371/journal.pone.0034046. Epub 2012 Mar 30.
9
Ancient deuterostome origins of vertebrate brain signalling centres.
Nature. 2012 Mar 14;483(7389):289-94. doi: 10.1038/nature10838.
10
Beyond the connectome: how neuromodulators shape neural circuits.
Bioessays. 2012 Jun;34(6):458-65. doi: 10.1002/bies.201100185. Epub 2012 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验