Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Parkville VIC 3010, Australia.
ACS Appl Mater Interfaces. 2013 Jun 12;5(11):5009-14. doi: 10.1021/am4007929. Epub 2013 May 30.
Hierarchically porous carbon (C), metal oxide (ZrTi), or carbon-metal oxide (CZrTi) hybrid beads are synthesized in one pot through the in situ self-assembly of Pluronic F127, titanium and zirconium propoxides, and polyacrylonitrile (PAN). Upon contact with water, a precipitation of PAN from the liquid phase occurs concurrently with polymerization and phase separation of the inorganic precursors. The C, ZrTi, and CZrTi materials have similar morphologies but different surface chemistries. The adsorption of carbon dioxide by each material has been studied and modeled using the Langmuir-Freundlich equation, generating parameters that are used to calculate the surface affinity distributions. The Langmuir, Freundlich, Tóth, and Temkin models were also applied but gave inferior fits, indicating that the adsorption occurred on an inhomogeneous surface reaching a maximum capacity as available surface sites became saturated. The carbon beads have higher surface affinity for CO2 than the hybrid and metal oxide materials.
通过原位自组装 Pluronic F127、钛和锆的丙氧基化合物以及聚丙烯腈(PAN),在一锅法中合成了具有分级多孔结构的碳(C)、金属氧化物(ZrTi)或碳-金属氧化物(CZrTi)杂化珠。与水接触时,同时发生 PAN 从液相中的沉淀、无机前体的聚合和相分离。C、ZrTi 和 CZrTi 材料具有相似的形态但具有不同的表面化学性质。使用 Langmuir-Freundlich 方程研究了每种材料对二氧化碳的吸附并进行了建模,生成了用于计算表面亲和力分布的参数。还应用了 Langmuir、Freundlich、Tóth 和 Temkin 模型,但拟合效果较差,表明吸附发生在不均匀的表面上,随着可用表面位的饱和,达到最大容量。碳珠对 CO2 的表面亲和力高于杂化和金属氧化物材料。