Senevirathna Hasanthi L, Weerasinghe P Vishakha T, Li Xu, Tan Ming-Yan, Kim Sang-Sub, Wu Ping
Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
Materials (Basel). 2022 Jan 27;15(3):983. doi: 10.3390/ma15030983.
MgO/Mg(OH)-based materials have been intensively explored for CO adsorption due to their high theoretical but low practical CO capture efficiency. Our previous study on the effect of HO wetting on CO adsorption in MgO/Mg(OH) nanostructures found that the presence of HO molecules significantly increases (decreases) CO adsorption on the MgO (Mg(OH)) surface. Furthermore, the magneto-water-wetting technique is used to improve the CO capture efficiency of various nanofluids by increasing the mass transfer efficiency of nanobeads. However, the influence of magneto-wetting to the CO adsorption at nanobead surfaces remains unknown. The effect of magneto-water-wetting on CO adsorption on MgO/Mg(OH) nanocomposites was investigated experimentally in this study. Contrary to popular belief, magneto-water-wetting does not always increase CO adsorption; in fact, if Mg(OH) dominates in the nanocomposite, it can actually decrease CO adsorption. As a result of our structural research, we hypothesized that the creation of a thin HO layer between nanograins prevents CO from flowing through, hence slowing down CO adsorption during the carbon-hydration aging process. Finally, the magneto-water-wetting technique can be used to control the carbon-hydration process and uncover both novel insights and discoveries of CO capture from air at room temperature to guide the design and development of ferrofluid devices for biomedical and energy applications.
基于氧化镁/氢氧化镁的材料因其高理论值但低实际二氧化碳捕获效率而被深入研究用于二氧化碳吸附。我们之前关于水的润湿性对氧化镁/氢氧化镁纳米结构中二氧化碳吸附影响的研究发现,水分子的存在显著增加(减少)了二氧化碳在氧化镁(氢氧化镁)表面的吸附。此外,磁水润湿技术通过提高纳米珠的传质效率来提高各种纳米流体的二氧化碳捕获效率。然而,磁润湿对纳米珠表面二氧化碳吸附的影响仍然未知。本研究通过实验研究了磁水润湿对氧化镁/氢氧化镁纳米复合材料上二氧化碳吸附的影响。与普遍看法相反,磁水润湿并不总是增加二氧化碳吸附;事实上,如果纳米复合材料中氢氧化镁占主导,它实际上会降低二氧化碳吸附。基于我们的结构研究,我们推测纳米颗粒之间形成的薄水层会阻止二氧化碳通过,从而减缓碳水化老化过程中的二氧化碳吸附。最后,可以利用磁水润湿技术来控制碳水化过程,并揭示从室温空气中捕获二氧化碳的新见解和新发现,以指导用于生物医学和能源应用的铁磁流体装置的设计和开发。