Suppr超能文献

运动强度与皮肤表面乳酸浓度之间的关系。

The Relationship between Exercise Intensity and Lactate Concentration on the Skin Surface.

作者信息

Ohkuwa Tetsuo, Tsukamoto Kazuhiko, Yamai Kazuaki, Itoh Hiroshi, Yamazaki Yoshihiko, Tsuda Takao

机构信息

Department of Material Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan;

出版信息

Int J Biomed Sci. 2009 Mar;5(1):23-7.

Abstract

We examined the relationship between skin surface lactate concentration on working muscle and heart rate during continuous graded cycling exercise. Sixteen healthy male volunteers participated in this study. A plastic container with 100 μl 1% ethanol was put on the skin surface on the belly of rectus femoris muscle. The workloads were 300, 600, 900 and 1080 (or 990) kpm/min, and each stage was 5 min in duration. Sample collections were performed at rest, during exercise, and recovery. The lactate concentration during exercise significantly increased compared to the basal level (p<0.05 or p<0.001). Skin surface lactate concentration was found to correlate significantly with heart rate at the exercise intensity of 360 kpm/min (r=-0.52, p<0.05), 720 kpm/min (r=-0.74, p<0.01) and 900 kpm (r=-0.53, p<0.05). This study confirmed that 1) the increase in lactate concentration on the skin surface on working muscle is associated with increase in exercise intensity (heart rate), and 2) the skin surface lactate concentration on the working muscle can be used as a parameter of exercise intensity in each subject.

摘要

我们研究了持续分级循环运动过程中工作肌肉皮肤表面乳酸浓度与心率之间的关系。16名健康男性志愿者参与了本研究。将装有100μl 1%乙醇的塑料容器放在股直肌腹部的皮肤表面。工作量分别为300、600、900和1080(或990)千帕米/分钟,每个阶段持续5分钟。在休息、运动和恢复期间进行样本采集。与基础水平相比,运动期间乳酸浓度显著增加(p<0.05或p<0.001)。发现在运动强度为360千帕米/分钟(r=-0.52,p<0.05)、720千帕米/分钟(r=-0.74,p<0.01)和900千帕米(r=-0.53,p<0.05)时,皮肤表面乳酸浓度与心率显著相关。本研究证实:1)工作肌肉皮肤表面乳酸浓度的增加与运动强度(心率)的增加有关;2)工作肌肉的皮肤表面乳酸浓度可作为每个受试者运动强度的一个参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d7/3614747/16bfeb4d4fff/IJBS-5-23_F1.jpg

相似文献

2
Effects of prior exercise on force-velocity test performance and quadriceps EMG.
Int J Sports Med. 2006 Mar;27(3):212-9. doi: 10.1055/s-2005-865624.
3
Influence of cycle exercise on acetone in expired air and skin gas.
Redox Rep. 2009;14(6):285-9. doi: 10.1179/135100009X12525712409850.
4
Lactate accumulation in muscle and blood during submaximal exercise.
Acta Physiol Scand. 1982 Mar;114(3):441-6. doi: 10.1111/j.1748-1716.1982.tb07007.x.
6
Noninvasive skeletal muscle lactate detection between periods of intense exercise in humans.
Eur J Appl Physiol Occup Physiol. 1998 Jun;78(1):20-7. doi: 10.1007/s004210050382.
8
Effect of different workloads varying in intensity and duration on resolution acuity.
Percept Mot Skills. 1979 Jun;48(3 Pt 2):1259-64. doi: 10.2466/pms.1979.48.3c.1259.
10
Diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy for measuring microvascular blood flow in dynamically exercising human muscles.
J Appl Physiol (1985). 2019 Nov 1;127(5):1328-1337. doi: 10.1152/japplphysiol.00324.2019. Epub 2019 Sep 12.

引用本文的文献

4
Vertical Strength Transfer Phenomenon Between Upper Body and Lower Body Exercise: Systematic Scoping Review.
Sports Med. 2024 Aug;54(8):2109-2139. doi: 10.1007/s40279-024-02039-8. Epub 2024 May 14.
5
Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology?
ACS Sens. 2021 Oct 22;6(10):3496-3508. doi: 10.1021/acssensors.1c01403. Epub 2021 Sep 22.
6
A chronic low-dose magnesium L-lactate administration has a beneficial effect on the myocardium and the skeletal muscles.
J Physiol Biochem. 2022 May;78(2):501-516. doi: 10.1007/s13105-021-00827-8. Epub 2021 Jul 22.

本文引用的文献

1
Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle.
Appl Physiol Nutr Metab. 2006 Feb;31(1):31-9. doi: 10.1139/h05-002.
2
Effects of high and low blood lactate concentrations on sweat lactate response.
Int J Sports Med. 2000 Nov;21(8):556-60. doi: 10.1055/s-2000-8483.
3
Isoform-specific regulation of the lactate transporters MCT1 and MCT4 by contractile activity.
Am J Physiol Endocrinol Metab. 2000 Nov;279(5):E1131-8. doi: 10.1152/ajpendo.2000.279.5.E1131.
4
Abundance and subcellular distribution of MCT1 and MCT4 in heart and fast-twitch skeletal muscles.
Am J Physiol Endocrinol Metab. 2000 Jun;278(6):E1067-77. doi: 10.1152/ajpendo.2000.278.6.E1067.
5
Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle.
Am J Physiol Endocrinol Metab. 2000 Apr;278(4):E571-9. doi: 10.1152/ajpendo.2000.278.4.E571.
6
Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle.
Am J Physiol. 1999 Feb;276(2):E255-61. doi: 10.1152/ajpendo.1999.276.2.E255.
7
Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3.
J Biol Chem. 1998 Jun 26;273(26):15920-6. doi: 10.1074/jbc.273.26.15920.
8
Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle.
J Appl Physiol (1985). 1998 Mar;84(3):987-94. doi: 10.1152/jappl.1998.84.3.987.
9
Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate.
Am J Physiol. 1998 Jan;274(1):E102-7. doi: 10.1152/ajpendo.1998.274.1.E102.
10
Chronic electrical stimulation increases MCT1 and lactate uptake in red and white skeletal muscle.
Am J Physiol. 1997 Aug;273(2 Pt 1):E239-46. doi: 10.1152/ajpendo.1997.273.2.E239.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验