Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), Campus de la Doua, 69622 Villeurbanne Cedex, France.
Inorg Chem. 2013 Jun 3;52(11):6260-72. doi: 10.1021/ic4004824. Epub 2013 May 15.
Synthesis and X-ray diffraction structures of cis and trans isomers of ruthenium and osmium metal complexes of general formulas (nBu4N)[cis-MCl4(NO)(Hind)], where M = Ru (1) and Os (3), and (nBu4N)[trans-MCl4(NO)(Hind)], where M = Ru (2) and Os (4) and Hind = 1H-indazole are reported. Interconversion between cis and trans isomers at high temperatures (80-130 °C) has been observed and studied by NMR spectroscopy. Kinetic data indicate that isomerizations correspond to reversible first order reactions. The rates of isomerization reactions even at 110 °C are very low with rate constants of 10(-5) s(-1) and 10(-6) s(-1) for ruthenium and osmium complexes, respectively, and the estimated rate constants of isomerization at room temperature are of ca. 10(-10) s(-1). The activation parameters, which have been obtained from fitting the reaction rates at different temperatures to the Eyring equation for ruthenium [ΔH(cis-trans)‡ = 122.8 ± 1.3; ΔH(trans-cis)‡ = 138.8 ± 1.0 kJ/mol; ΔS(cis-trans)‡ = -18.7 ± 3.6; ΔS(trans-cis)‡ = 31.8 ± 2.7 J/(mol·K)] and osmium [ΔH(cis-trans)‡ = 200.7 ± 0.7; ΔH(trans-cis)‡ = 168.2 ± 0.6 kJ/mol; ΔS(cis-trans)‡ = 142.7 ± 8.9; ΔS(trans-cis)‡ = 85.9 ± 3.9 J/(mol·K)] reflect the inertness of these systems. The entropy of activation for the osmium complexes is highly positive and suggests the dissociative mechanism of isomerization. In the case of ruthenium, the activation entropy for the cis to trans isomerization is negative [-18.6 J/(mol·K)], while being positive [31.0 J/(mol·K)] for the trans to cis conversion. The thermodynamic parameters for cis to trans isomerization of [RuCl4(NO)(Hind)]-, viz. ΔH° = 13.5 ± 1.5 kJ/mol and ΔS° = -5.2 ± 3.4 J/(mol·K) indicate the low difference between the energies of cis and trans isomers. The theoretical calculation has been carried out on isomerization of ruthenium complexes with DFT methods. The dissociative, associative, and intramolecular twist isomerization mechanisms have been considered. The value for the activation energy found for the dissociative mechanism is in good agreement with experimental activation enthalpy. Electrochemical investigation provides further evidence for higher reactivity of ruthenium complexes compared to that of osmium counterparts and shows that intramolecular electron transfer reactions do not affect the isomerization process. A dissociative mechanism of cis↔trans isomerization has been proposed for both ruthenium and osmium complexes.
报告了顺式和反式异构体的钌和锇金属配合物的合成和 X 射线衍射结构,这些配合物的通式为(nBu4N)[cis-MCl4(NO)(Hind)],其中 M = Ru(1)和 Os(3),以及(nBu4N)[trans-MCl4(NO)(Hind)],其中 M = Ru(2)和 Os(4),Hind = 1H-吲唑。在高温(80-130°C)下观察到顺式和反式异构体之间的相互转化,并通过 NMR 光谱进行了研究。动力学数据表明,异构化对应于可逆的一级反应。即使在 110°C 下,异构化反应的速率也非常低,钌和锇配合物的速率常数分别为 10(-5) s(-1)和 10(-6) s(-1),室温下的估计异构化速率常数约为 10(-10) s(-1)。通过将反应速率在不同温度下拟合到 Eyring 方程,获得了钌[ΔH(cis-trans)‡=122.8±1.3;ΔH(trans-cis)‡=138.8±1.0 kJ/mol;ΔS(cis-trans)‡=-18.7±3.6;ΔS(trans-cis)‡=31.8±2.7 J/(mol·K)]和锇[ΔH(cis-trans)‡=200.7±0.7;ΔH(trans-cis)‡=168.2±0.6 kJ/mol;ΔS(cis-trans)‡=142.7±8.9;ΔS(trans-cis)‡=85.9±3.9 J/(mol·K)]的活化参数反映了这些体系的惰性。这些系统异构化的熵活化值非常高,表明了离解机制。对于钌,顺式到反式异构化的活化熵为负[-18.6 J/(mol·K)],而反式到顺式转化的活化熵为正[31.0 J/(mol·K)]。[RuCl4(NO)(Hind)]-的顺式到反式异构化的热力学参数,即ΔH°=13.5±1.5 kJ/mol和ΔS°=-5.2±3.4 J/(mol·K)表明顺式和反式异构体之间的能量差异较小。用 DFT 方法对钌配合物的异构化进行了理论计算。考虑了离解、缔合和分子内扭转异构化机制。发现离解机制的活化能与实验活化焓吻合较好。电化学研究进一步证明了与锇配合物相比,钌配合物具有更高的反应活性,并表明分子内电子转移反应不会影响异构化过程。提出了顺式↔反式异构化的离解机制,适用于钌和锇配合物。