Saito Kuniaki
Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo 160-8582, Japan.
Genes Genet Syst. 2013;88(1):9-17. doi: 10.1266/ggs.88.9.
A mechanism is required to repress the expression and transposition of transposable elements (TEs) to ensure the stable inheritance of genomic information. Accumulating evidence indicates that small non-coding RNAs are important regulators of TEs. Among small non-coding RNAs, PIWI-interacting RNAs (piRNAs) serve as guide molecules for recognizing and silencing numerous TEs and work in collaboration with PIWI subfamily proteins in gonadal cells. Disruption of the piRNA pathway correlates with loss of proper genomic organization, gene expression control and fertility. Moreover, recent studies on the molecular mechanisms of piRNA biogenesis and on piRNA function have shown that piRNAs act as maternally inherited genic elements, transferring information about repressed TEs to progeny. These findings enable a molecular explanation of mysterious epigenetic phenomena, such as hybrid dysgenesis and TE adaptation with age. Here, I review our current knowledge of piRNAs derived from biochemical and genetic studies and discuss how small RNAs are utilized to maintain genome organization and to provide non-DNA genetic information. I mainly focus on Drosophila but also discuss comparisons with other species.
需要一种机制来抑制转座元件(TEs)的表达和转座,以确保基因组信息的稳定遗传。越来越多的证据表明,小非编码RNA是TEs的重要调节因子。在小非编码RNA中,PIWI相互作用RNA(piRNA)作为识别和沉默众多TEs的指导分子,并在生殖细胞中与PIWI亚家族蛋白协同工作。piRNA途径的破坏与基因组组织、基因表达控制和生育能力的丧失相关。此外,最近关于piRNA生物发生的分子机制和piRNA功能的研究表明,piRNA作为母系遗传的基因元件,将有关被抑制TEs的信息传递给后代。这些发现为神秘的表观遗传现象,如杂种不育和TEs随年龄的适应性,提供了分子解释。在这里,我回顾了我们目前从生化和遗传研究中获得的关于piRNA的知识,并讨论了小RNA如何被用于维持基因组组织和提供非DNA遗传信息。我主要关注果蝇,但也会讨论与其他物种的比较。