Suppr超能文献

量子等离子体中离子结构和阻止本领的流体动力学理论。

Hydrodynamic theory for ion structure and stopping power in quantum plasmas.

作者信息

Shukla P K, Akbari-Moghanjoughi M

机构信息

International Centre for Advanced Studies in Physical Sciences & Institute for Theoretical Physics, Faculty of Physics & Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):043106. doi: 10.1103/PhysRevE.87.043106. Epub 2013 Apr 12.

Abstract

We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion coupling parameter alone cannot be a good measure for determining ion correlation effects in a collisional quantum plasma, and such a characteristic of a dense quantum plasma should be evaluated against each of the plasma parameters involved. The present investigation thus provides testable predictions for the DISF and ISP and is henceforth applicable to a wide range of compressed plasma categories ranging from laboratory to astrophysical warm dense matter.

摘要

我们提出了一种关于动态离子结构因子(DISF)和离子阻止本领的理论,该理论适用于具有简并电子流体和非简并强关联离子流体的非磁化碰撞量子等离子体。我们的理论基于涨落耗散定理和从线性化粘弹性量子流体动力学(LVQHD)模型推导出来的量子等离子体介电常数。后者包含了量子力的基本物理特性,这些量子力与量子统计压力、电子交换和电子关联效应、由重叠电子波函数的色散引起的控制简并电子流体动力学的量子电子反冲效应以及强关联离子流体的粘弹性特性相关。简并电子和非简并强关联离子通过空间电荷电力相互耦合。因此,我们的LVQHD理论对于原子尺度上的碰撞量子等离子体是有效的,该等离子体具有广泛的离子耦合参数、等离子体组成和等离子体数密度,这些参数与实验室中的压缩等离子体(惯性约束聚变方案)和天体物理环境(例如,温稠密物质和白矮星的核心)相关。研究发现,量子电子效应和强关联离子的粘弹性特性显著影响DISF和离子阻止本领(ISP)的特征。与以往通过忽略相互竞争的集体效应的基本物理特性、依据离子耦合参数研究离子关联的理论不同, 我们在此开发了一种方法,用于根据诸如维格纳 - 赛茨半径、离子原子序数和离子温度等单个参数来评估等离子体静态和动态特征的依赖性。研究发现,由于量子等离子体中电荷屏蔽的复杂性,仅离子耦合参数不能很好地衡量碰撞量子等离子体中的离子关联效应,这种稠密量子等离子体的特性应该针对所涉及的每个等离子体参数进行评估。因此,本研究为DISF和ISP提供了可检验预测,并且此后适用于从实验室到天体物理温稠密物质的广泛压缩等离子体类别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验