Graziani F R, Bauer J D, Murillo M S
Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):033104. doi: 10.1103/PhysRevE.90.033104. Epub 2014 Sep 3.
Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD. The STLS contribution produces an effective electron-proton interaction that involves the electron-proton structure factor, thereby extending the usual mean-field theory to correlated but near equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons and their correlations coupled to a MD description for the ions. A set of coupled equations for the one-particle electron Wigner function and the electron-electron and electron-proton correlation functions are coupled to a classical Liouville equation for the protons. This latter variation has both time and momentum dependent correlations.
在高能量密度实验中产生的热致密物质中,电子之间的耦合较弱。它们还具有适度的量子力学性质,与之相关的离子则是经典的,并且可能存在强耦合。此外,在这些热致密物质条件下,等离子体的动力学演化涉及各种输运和能量交换过程。量子动力学理论是处理电子的理想工具,但不足以处理离子。分子动力学非常适合描述经典的、强耦合的离子,但不适用于电子。我们开发了一种方法,将电子的维格纳动力学处理与离子的经典分子动力学相结合。我们将这种混合方法称为“动力学理论分子动力学”,即KTMD。本文的目的是从第一原理推导KTMD,并将其置于坚实的理论基础之上。KTMD为模拟热致密状态下的等离子体提供的框架特别有用,因为当前的计算方法通常受到无法处理电子成分的动态量子演化的限制。利用电子 - 质子等离子体的N体冯·诺伊曼方程,得到了KTMD的三种变体。每种变体由等离子体的物理状态(例如,碰撞与无碰撞)决定。KTMD的第一种变体产生一组封闭的方程,由电子单粒子分布函数的平均场量子动力学方程与质子的经典刘维尔方程耦合而成。后一个方程既包括质子 - 质子库仑相互作用,也包括涉及电子密度与电子 - 质子库仑势卷积的有效电子 - 质子相互作用。然后通过辛维 - 托西 - 兰德 - 肖兰德(STLS)假设将平均场方法扩展到纳入平衡电子 - 质子关联。这是KTMD的第二种变体。STLS贡献产生了一种涉及电子 - 质子结构因子的有效电子 - 质子相互作用,从而将通常的平均场理论扩展到相关但接近平衡的系统。最后,推导了KTMD的第三种变体。它包括与离子的分子动力学描述耦合的动态电子及其关联。单粒子电子维格纳函数以及电子 - 电子和电子 - 质子关联函数的一组耦合方程与质子的经典刘维尔方程耦合。后一种变体具有时间和动量相关的关联。