Suppr超能文献

基于脑机接口的辅助和替代沟通中的表现评估。

Performance assessment in brain-computer interface-based augmentative and alternative communication.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.

出版信息

Biomed Eng Online. 2013 May 16;12:43. doi: 10.1186/1475-925X-12-43.

Abstract

A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems.

摘要

目前,大量不可公度的指标被用于报告增强和替代交流(AAC)用脑-机接口(BCI)的性能。缺乏标准的指标使得不同的基于 BCI 的 AAC 系统之间的比较变得不可能,阻碍了这项技术的快速发展。本文回顾了 2005 年 1 月至 2012 年 1 月期间用于报告 AAC 用 BCI 性能的指标。我们区分了用于报告 BCI 控制模块输出性能的一级指标,该模块将脑信号转换为逻辑控制输出,以及用于报告选择增强模块性能的二级指标,该模块将逻辑控制转换为语义控制。我们建议:(1)使用互信息或信息传输率(ITR)等相称的指标来报告一级 BCI 性能,因为这些指标代表了信息吞吐量,这在 AAC 用 BCI 中是很重要的;(2)使用 BCI-效用指标来报告二级 BCI 性能,因为它能够处理所有提高 BCI 性能的当前方法;(3)这些指标应该辅以每个独特的 BCI 配置的具体信息;(4)涉及选择增强模块的研究应该在 BCI 系统的一级和二级报告性能。遵循这些建议将能够在 BCI 控制和选择增强模块之间进行有效的比较,从而加速基于 BCI 的 AAC 系统的研究和开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131a/3662584/de536d7586fb/1475-925X-12-43-1.jpg

相似文献

1
Performance assessment in brain-computer interface-based augmentative and alternative communication.
Biomed Eng Online. 2013 May 16;12:43. doi: 10.1186/1475-925X-12-43.
2
Brain-Computer Interfaces for Augmentative and Alternative Communication: A Tutorial.
Am J Speech Lang Pathol. 2018 Feb 6;27(1):1-12. doi: 10.1044/2017_AJSLP-16-0244.
3
Guidelines for Feature Matching Assessment of Brain-Computer Interfaces for Augmentative and Alternative Communication.
Am J Speech Lang Pathol. 2018 Aug 6;27(3):950-964. doi: 10.1044/2018_AJSLP-17-0135.
6
Human visual skills for brain-computer interface use: a tutorial.
Disabil Rehabil Assist Technol. 2020 Oct;15(7):799-809. doi: 10.1080/17483107.2020.1754929. Epub 2020 Jun 1.
8
Brain-computer interfaces for communication and control.
Clin Neurophysiol. 2002 Jun;113(6):767-91. doi: 10.1016/s1388-2457(02)00057-3.

引用本文的文献

1
Knowledge mapping and research trends of brain-computer interface technology in rehabilitation: a bibliometric analysis.
Front Hum Neurosci. 2024 Oct 30;18:1486167. doi: 10.3389/fnhum.2024.1486167. eCollection 2024.
2
Recommendations for promoting user agency in the design of speech neuroprostheses.
Front Hum Neurosci. 2023 Oct 18;17:1298129. doi: 10.3389/fnhum.2023.1298129. eCollection 2023.
3
BCI-Utility Metric for Asynchronous P300 Brain-Computer Interface Systems.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:3968-3977. doi: 10.1109/TNSRE.2023.3322125. Epub 2023 Oct 16.
4
[A design and evaluation of wearable p300 brain-computer interface system based on Hololens2].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Aug 25;40(4):709-717. doi: 10.7507/1001-5515.202207055.
6
Instant classification for the spatially-coded BCI.
PLoS One. 2022 Apr 28;17(4):e0267548. doi: 10.1371/journal.pone.0267548. eCollection 2022.
7
Brain-Computer Interfaces for Children With Complex Communication Needs and Limited Mobility: A Systematic Review.
Front Hum Neurosci. 2021 Jul 14;15:643294. doi: 10.3389/fnhum.2021.643294. eCollection 2021.
8
The Self-Face Paradigm Improves the Performance of the P300-Speller System.
Front Comput Neurosci. 2020 Jan 15;13:93. doi: 10.3389/fncom.2019.00093. eCollection 2019.
10
A Novel Audiovisual P300-Speller Paradigm Based on Cross-Modal Spatial and Semantic Congruence.
Front Neurosci. 2019 Sep 27;13:1040. doi: 10.3389/fnins.2019.01040. eCollection 2019.

本文引用的文献

1
A plug-and-play brain-computer interface to operate commercial assistive technology.
Disabil Rehabil Assist Technol. 2014 Mar;9(2):144-50. doi: 10.3109/17483107.2013.785036. Epub 2013 Apr 16.
2
A brain-computer interface as input channel for a standard assistive technology software.
Clin EEG Neurosci. 2011 Oct;42(4):236-44. doi: 10.1177/155005941104200409.
3
Gaze-independent brain-computer interfaces based on covert attention and feature attention.
J Neural Eng. 2011 Dec;8(6):066003. doi: 10.1088/1741-2560/8/6/066003. Epub 2011 Oct 6.
4
Flashing characters with famous faces improves ERP-based brain-computer interface performance.
J Neural Eng. 2011 Oct;8(5):056016. doi: 10.1088/1741-2560/8/5/056016. Epub 2011 Sep 20.
5
An SSVEP-based BCI using high duty-cycle visual flicker.
IEEE Trans Biomed Eng. 2011 Dec;58(12):3350-9. doi: 10.1109/TBME.2011.2162586. Epub 2011 Jul 22.
6
Brain-computer interface based on generation of visual images.
PLoS One. 2011;6(6):e20674. doi: 10.1371/journal.pone.0020674. Epub 2011 Jun 10.
7
EEG-based motor imagery classification using enhanced active segment selection and adaptive classifier.
Comput Biol Med. 2011 Aug;41(8):633-9. doi: 10.1016/j.compbiomed.2011.05.014. Epub 2011 Jun 17.
8
Enabling fast brain-computer interaction by single-trial extraction of visual evoked potentials.
J Med Syst. 2011 Oct;35(5):1323-31. doi: 10.1007/s10916-011-9696-z. Epub 2011 Jun 18.
9
SSVEP-based Bremen-BCI interface--boosting information transfer rates.
J Neural Eng. 2011 Jun;8(3):036020. doi: 10.1088/1741-2560/8/3/036020. Epub 2011 May 10.
10
Impact of auditory distraction on user performance in a brain-computer interface driven by different mental tasks.
Clin Neurophysiol. 2011 Oct;122(10):2003-9. doi: 10.1016/j.clinph.2011.03.019. Epub 2011 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验