Suppr超能文献

张量空间中图像分割的图割方法。

A Graph Cut Approach to Image Segmentation in Tensor Space.

作者信息

Malcolm James, Rathi Yogesh, Tannenbaum Allen

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0250.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008:1-8. doi: 10.1109/CVPR.2007.383404.

Abstract

This paper proposes a novel method to apply the standard graph cut technique to segmenting multimodal tensor valued images. The Riemannian nature of the tensor space is explicitly taken into account by first mapping the data to a Euclidean space where non-parametric kernel density estimates of the regional distributions may be calculated from user initialized regions. These distributions are then used as regional priors in calculating graph edge weights. Hence this approach utilizes the true variation of the tensor data by respecting its Riemannian structure in calculating distances when forming probability distributions. Further, the non-parametric model generalizes to arbitrary tensor distribution unlike the Gaussian assumption made in previous works. Casting the segmentation problem in a graph cut framework yields a segmentation robust with respect to initialization on the data tested.

摘要

本文提出了一种将标准图割技术应用于多模态张量值图像分割的新方法。通过首先将数据映射到欧几里得空间,明确考虑了张量空间的黎曼性质,在该空间中可以根据用户初始化区域计算区域分布的非参数核密度估计。然后,这些分布在计算图边缘权重时用作区域先验。因此,这种方法在形成概率分布时通过在计算距离时尊重其黎曼结构来利用张量数据的真实变化。此外,与先前工作中所做的高斯假设不同,非参数模型可以推广到任意张量分布。将分割问题置于图割框架中,对于所测试的数据,其分割结果在初始化方面具有鲁棒性。

相似文献

1
A Graph Cut Approach to Image Segmentation in Tensor Space.张量空间中图像分割的图割方法。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008:1-8. doi: 10.1109/CVPR.2007.383404.
9
Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images.随机游走和图割在 PET-CT 图像中肺肿瘤的共分割。
IEEE Trans Image Process. 2015 Dec;24(12):5854-67. doi: 10.1109/TIP.2015.2488902. Epub 2015 Oct 8.

引用本文的文献

2
aXonica: A support package for MRI based Neuroimaging.Axonica:一个基于磁共振成像的神经成像支持软件包。
Biotechnol Notes. 2024 Aug 22;5:120-136. doi: 10.1016/j.biotno.2024.08.001. eCollection 2024.
4
Localized Statistics for DW-MRI Fiber Bundle Segmentation.用于扩散加权磁共振成像纤维束分割的局部统计方法
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008:1-8. doi: 10.1109/cvprw.2008.4562999.
6
Efficient Segmentation Using Feature-based Graph Partitioning Active Contours.基于特征的图划分主动轮廓的高效分割
Proc IEEE Int Conf Comput Vis. 2009 Sep 29;2009:873-880. doi: 10.1109/iccv.2009.5459320.
7
The effect of metric selection on the analysis of diffusion tensor MRI data.度量选择对弥散张量 MRI 数据分析的影响。
Neuroimage. 2010 Feb 1;49(3):2190-204. doi: 10.1016/j.neuroimage.2009.10.071. Epub 2009 Oct 30.
8
Mathematical methods for diffusion MRI processing.扩散磁共振成像处理的数学方法。
Neuroimage. 2009 Mar;45(1 Suppl):S111-22. doi: 10.1016/j.neuroimage.2008.10.054. Epub 2008 Nov 13.

本文引用的文献

2
Diffusion tensor imaging: concepts and applications.扩散张量成像:概念与应用
J Magn Reson Imaging. 2001 Apr;13(4):534-46. doi: 10.1002/jmri.1076.
3
MR diffusion tensor spectroscopy and imaging.磁共振扩散张量波谱成像
Biophys J. 1994 Jan;66(1):259-67. doi: 10.1016/S0006-3495(94)80775-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验