Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia.
Chem Biodivers. 2013 May;10(5):838-63. doi: 10.1002/cbdv.201200421.
Antiamoebin I (Aam-I) is a membrane-active peptaibol antibiotic isolated from fungal species belonging to the genera Cephalosporium, Emericellopsis, Gliocladium, and Stilbella. In comparison with other 16-amino acid-residue peptaibols, e.g., zervamicin IIB (Zrv-IIB), Aam-I possesses relatively weak biological and channel-forming activities. In MeOH solution, Aam-I demonstrates fast cooperative transitions between right-handed and left-handed helical conformation of the N-terminal (1-8) region. We studied Aam-I spatial structure and backbone dynamics in the membrane-mimicking environment (DMPC/DHPC bicelles)(1) ) by heteronuclear (1) H,(13) C,(15) N-NMR spectroscopy. Interaction with the bicelles stabilizes the Aam-I right-handed helical conformation retaining significant intramolecular mobility on the ms-μs time scale. Extensive ms-μs dynamics were also detected in the DPC and DHPC micelles and DOPG nanodiscs. In contrast, Zrv-IIB in the DPC micelles demonstrates appreciably lesser mobility on the μs-ms time scale. Titration with Mn(2+) and 16-doxylstearate paramagnetic probes revealed Aam-I binding to the bicelle surface with the N-terminus slightly immersed into hydrocarbon region. Fluctuations of the Aam-I helix between surface-bound and transmembrane (TM) state were observed in the nanodisc membranes formed from the short-chain (diC12 : 0) DLPC/DLPG lipids. All the obtained experimental data are in agreement with the barrel-stave model of TM pore formation, similarly to the mechanism proposed for Zrv-IIB and other peptaibols. The observed extensive intramolecular dynamics explains the relatively low activity of Aam-I.
抗阿米巴素 I(Aam-I)是一种从属于 Cephalosporium、Emericellopsis、Gliocladium 和 Stilbella 属的真菌物种中分离出的膜活性肽抗生素。与其他 16 个氨基酸残基的肽类抗生素(如泽罗米辛 IIB(Zrv-IIB))相比,Aam-I 具有相对较弱的生物活性和通道形成活性。在 MeOH 溶液中,Aam-I 表现出 N 端(1-8)区域的右手和左手螺旋构象之间的快速协同转变。我们通过异核(1)H、(13)C、(15)N-NMR 光谱研究了 Aam-I 在模拟膜环境(DMPC/DHPC 双胶束)(1)中的空间结构和骨架动力学。与双胶束的相互作用稳定了 Aam-I 的右手螺旋构象,在 ms-μs 时间尺度上保留了显著的分子内流动性。在 DPC 和 DHPC 胶束以及 DOPG 纳米盘中也检测到广泛的 ms-μs 动力学。相比之下,Zrv-IIB 在 DPC 胶束中的 μs-ms 时间尺度上的流动性要小得多。Mn(2+)和 16-二氧代硬脂酸顺磁探针滴定表明,Aam-I 与双胶束表面结合,N 端略微浸入烃区。在由短链(diC12:0)DLPC/DLPG 脂质形成的纳米盘中观察到 Aam-I 螺旋在表面结合和跨膜(TM)状态之间的波动。所有获得的实验数据均与 TM 孔形成的桶状支柱模型一致,类似于为 Zrv-IIB 和其他肽类抗生素提出的机制。观察到的广泛的分子内动力学解释了 Aam-I 活性相对较低的原因。