Li Chunsen, Shaik Sason
Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
RSC Adv. 2013 Mar 7;3(9):2995-3005. doi: 10.1039/C2RA22294A.
Recent experimental studies show that usage of perfluoro decanoic acid (PFDA), as a dummy substrate, can elicit P450 to perform hydroxylation of small alkanes, such as methane (ref. 17) and propane (ref. 17 and ref. 18). To comprehend the mechanism whereby PFDA operates to potentiate P450 to catalyze the hydroxylation of small alkanes, we used molecular dynamics (MD) and hybrid quantum mechanical / molecular mechanical (QM/MM) calculations. The MD results show that without the PFDA, methane escapes the active site, while the presence of PFDA can potentially induce a productive Cpd I-Methane juxtaposition for rapid oxidation. Nevertheless, when only a single methane molecule is present near the PFDA, it still escapes the pocket within less than a nanosecond. However, when three methane molecules are present in the pocket, they alternate quasi-periodically such that at all times (within 10 ns), a molecule of methane is always present in the proximity of Cpd I in a reactive conformation. Our results further demonstrate that the PFDA does not exert any electrostatic catalysis, whether the PFDA is in the protonated or deprotonated forms. Taken together, we conclude that methane hydroxylation requires, in addition to PFDA, a high partial pressure of methane that will cause a high methane concentration in the active site. Further study of ethane and propane hydroxylations demonstrates that higher alkane concentration is helpful for all the three small alkanes. Thus for the smallest alkane, methane, at least three molecules are necessary whereas for the larger ethane, two molecules are needed to force one ethane to be closer to Cpd I. Finally, for propane a second molecule is helpful but not absolutely necessary; for this molecule the PFDA may well be sufficient to keep propane close to Cpd I for efficient oxidation. We therefore propose that high alkane pressure should assist small alkane hydroxylation by P450 in a manner inversely proportional to the size of the alkanes.
最近的实验研究表明,使用全氟癸酸(PFDA)作为虚拟底物,可以引发细胞色素P450对小分子烷烃进行羟基化反应,如甲烷(参考文献17)和丙烷(参考文献17和参考文献18)。为了理解PFDA促进细胞色素P450催化小分子烷烃羟基化反应的机制,我们使用了分子动力学(MD)和量子力学/分子力学混合(QM/MM)计算方法。分子动力学结果表明,没有PFDA时,甲烷会从活性位点逸出,而PFDA的存在可能会诱导生成有利于快速氧化的复合中间体I-甲烷并列结构。然而,当PFDA附近仅存在单个甲烷分子时,它仍会在不到一纳秒的时间内从口袋中逸出。但是,当口袋中有三个甲烷分子时,它们会准周期性交替,使得在所有时刻(10纳秒内),总有一个甲烷分子以反应性构象存在于复合中间体I附近。我们的结果进一步表明,无论PFDA是质子化还是去质子化形式,它都不会发挥任何静电催化作用。综上所述,我们得出结论,甲烷羟基化除了需要PFDA外,还需要高甲烷分压,这将导致活性位点处甲烷浓度较高。对乙烷和丙烷羟基化反应的进一步研究表明,较高的烷烃浓度对所有这三种小分子烷烃都有帮助。因此,对于最小的烷烃甲烷,至少需要三个分子,而对于较大的乙烷,则需要两个分子迫使一个乙烷更靠近复合中间体I。最后,对于丙烷,第二个分子有帮助但不是绝对必要;对于这个分子,PFDA很可能足以使丙烷靠近复合中间体I以进行有效氧化。因此,我们提出高烷烃压力应以与烷烃大小成反比的方式协助细胞色素P450对小分子烷烃进行羟基化反应。