Suppr超能文献

密度泛函理论在生物无机感兴趣的含铁分子中的应用。

Applications of density functional theory to iron-containing molecules of bioinorganic interest.

机构信息

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, Singapore.

出版信息

Front Chem. 2014 Apr 29;2:14. doi: 10.3389/fchem.2014.00014. eCollection 2014.

Abstract

The past decades have seen an explosive growth in the application of density functional theory (DFT) methods to molecular systems that are of interest in a variety of scientific fields. Owing to its balanced accuracy and efficiency, DFT plays particularly useful roles in the theoretical investigation of large molecules. Even for biological molecules such as proteins, DFT finds application in the form of, e.g., hybrid quantum mechanics and molecular mechanics (QM/MM), in which DFT may be used as a QM method to describe a higher prioritized region in the system, while a MM force field may be used to describe remaining atoms. Iron-containing molecules are particularly important targets of DFT calculations. From the viewpoint of chemistry, this is mainly because iron is abundant on earth, iron plays powerful (and often enigmatic) roles in enzyme catalysis, and iron thus has the great potential for biomimetic catalysis of chemically difficult transformations. In this paper, we present a brief overview of several recent applications of DFT to iron-containing non-heme synthetic complexes, heme-type cytochrome P450 enzymes, and non-heme iron enzymes, all of which are of particular interest in the field of bioinorganic chemistry. Emphasis will be placed on our own work.

摘要

过去几十年中,密度泛函理论(DFT)方法在各种科学领域中应用于感兴趣的分子系统方面取得了爆炸式增长。由于其准确性和效率的平衡,DFT 在大分子的理论研究中特别有用。即使对于蛋白质等生物分子,DFT 也以混合量子力学和分子力学(QM/MM)的形式应用,其中 DFT 可用作描述系统中优先级较高区域的 QM 方法,而 MM 力场可用于描述剩余的原子。含铁分子是 DFT 计算的特别重要的目标。从化学的角度来看,这主要是因为铁在地球上丰富,铁在酶催化中发挥强大(通常是神秘的)作用,因此铁具有仿生催化化学上困难转化的巨大潜力。在本文中,我们简要概述了 DFT 在含铁非血红素合成配合物、血红素型细胞色素 P450 酶和非血红素铁酶中的几种最新应用,这些都是生物无机化学领域特别感兴趣的。重点将放在我们自己的工作上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e645/4010748/bd924566928c/fchem-02-00014-g0014.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验