Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Berlin, Germany.
Astrobiology. 2013 May;13(5):415-38. doi: 10.1089/ast.2012.0926.
Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process. Comparing 1g with 3g scenarios, our analysis suggests it is important to include the effects of interactive chemistry.
对围绕 M 矮星运行的“宜居带”内行星的超地球大气层进行光谱特征分析,是系外行星科学的一个重点。其中一个核心挑战是,要理解和预测大气生物特征(与生命相关的物种)的预期光谱信号。我们的工作应用了一个全球平均辐射-对流-光化学反应柱模型,假设行星具有类似于地球的生物量和行星演化。我们研究了重力分别为 1g 和 3g、表面气压为 1 巴的行星,中央恒星的光谱类型从 M0 到 M7。计算出的行星场景的光谱信号在 Rauer 及其同事的早期工作中已经提出。本工作的主要动机是对行星大气中的化学过程进行更深入的分析。我们应用了一种诊断工具,即路径分析程序,以阐明形成和破坏生物特征物种的光化学反应途径。臭氧是复杂生命的潜在生物特征。我们分析的一个重要结果是,臭氧光化学反应从主要的 Chapman 生成(在地球平流层中占主导地位)转变为较冷(M5-M7)类 M 矮星宜居带内行星上的烟雾主导型臭氧生成。这一结果与来自中央恒星的 UVB 波长范围内的能量通量降低有关,因此行星大气对分子氧的光解较慢,这减缓了 Chapman 臭氧生成。这对于未来的大气特征探测任务很重要,因为它提供了一个指示,表明不同的化学环境可能导致臭氧产生非常不同的反应,例如宇宙射线。氧化亚氮是简单细菌生命的生物特征,在低平流层 UV 条件下,即在围绕较冷恒星运行的行星上,较为有利。这种物质从其表面源输送到平流层并在那里被破坏,也可能是一个关键过程。通过比较 1g 和 3g 场景,我们的分析表明,考虑交互化学的影响很重要。