Gebauer S, Grenfell J L, Stock J W, Lehmann R, Godolt M, von Paris P, Rauer H
1 Zentrum für Astronomie und Astrophysik (ZAA), Technische Universität Berlin (TUB) , Berlin, Germany .
2 Institut für Planetenforschung (PF) , Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany .
Astrobiology. 2017 Jan;17(1):27-54. doi: 10.1089/ast.2015.1384.
Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O, whereas in the upper atmosphere, most O is formed abiotically via CO photolysis. The O bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH oxidation scheme. We calculate increased CH with increasing O during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O is unique. Mixing, CH fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O fluxes. Regarding exoplanets, different "states" of O could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O that masks its biosphere over a wide range of conditions). Key Words: Early Earth-Proterozoic-Archean-Oxygen-Atmosphere-Biogeochemistry-Photochemistry-Biosignatures-Earth-like planets. Astrobiology 16, 27-54.
了解地球以及潜在宜居的类地行星的演化对于洞悉我们在宇宙中的起源至关重要。在宜居带寻找类地行星并运用气候和光化学模型研究它们的大气,是系外行星科学的核心关注点。以地球的演化作为类地行星的参考,一个核心科学目标是了解早期地球上大气、地质和生物之间的相互作用。地球历史上的大氧化事件无疑是由它们的相互作用引起的,但这一事件的起源和控制过程尚未得到充分理解,对此的研究将需要跨学科的耦合模型。在这项工作中,我们展示了新开发的耦合大气生物地球化学模型的结果,其中大气中的氧气浓度被固定为地质证据推断出的值。应用一种独特的工具(路径分析程序),我们首次对大氧化事件附近早期地球大气中控制氧气的催化循环进行了定量分析。复杂的氧化途径在破坏氧气方面起着关键作用,而在高层大气中,大部分氧气是通过一氧化碳光解非生物形成的。我们的计算中未观察到戈德布拉特等人(2006年)发现的氧气双稳态,这可能是由于我们详细的甲烷氧化方案。我们计算出在大氧化事件期间,随着氧气增加甲烷也增加。对于给定的大气表面通量,可能存在不同的大气状态;然而,产生氧气的生物圈的净初级生产力是唯一的。混合、甲烷通量、海洋溶解度以及地幔/地壳性质强烈影响净初级生产力和表面氧气通量。关于系外行星,对于类似的生物量输出可能存在不同的氧气“状态”。强烈的地质活动可能导致生命的误判(因为我们的分析表明,在广泛的条件下,还原性气体会去除掩盖其生物圈的氧气)。关键词:早期地球 - 元古代 - 太古宙 - 氧气 - 大气 - 生物地球化学 - 光化学 - 生物特征 - 类地行星。天体生物学16,27 - 54。