Suppr超能文献

围绕 M 矮星的类地行星大气演化:用耦合大气生物地球化学模型评估大气和生物圈。

Evolution of Earth-like Planetary Atmospheres around M Dwarf Stars: Assessing the Atmospheres and Biospheres with a Coupled Atmosphere Biogeochemical Model.

机构信息

1 Zentrum für Astronomie und Astrophysik (ZAA), Technische Universität Berlin (TUB) , Berlin, Germany .

2 Institut für Planetenforschung (PF) , Abteilung Eaxtrasolare Planeten und Atmosphären (EPA), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany .

出版信息

Astrobiology. 2018 Jul;18(7):856-872. doi: 10.1089/ast.2017.1723.

Abstract

Earth-like planets orbiting M dwarfs are prominent targets when searching for life outside the Solar System. We apply our Coupled Atmosphere Biogeochemical model to investigate the coupling between the biosphere, geosphere, and atmosphere in order to gain insight into the atmospheric evolution of Earth-like planets orbiting M dwarfs and to understand the processes affecting biosignatures and climate on such worlds. This is the first study applying an automated chemical pathway analysis quantifying the production and destruction pathways of molecular oxygen (O) for an Earth-like planet with an Archean O concentration orbiting in the habitable zone of the M dwarf star AD Leonis, which we take as a type-case of an active M dwarf. The main production arises in the upper atmosphere from carbon dioxide photolysis followed by catalytic hydrogen oxide radical (HO) reactions. The strongest destruction does not take place in the troposphere, as was the case in Gebauer et al. ( 2017 ) for an early Earth analog planet around the Sun, but instead in the middle atmosphere where water photolysis is the strongest. Results further suggest that these atmospheres are in absolute terms less destructive for O than for early Earth analog planets around the Sun despite higher concentrations of reduced gases such as molecular hydrogen, methane, and carbon monoxide. Hence smaller amounts of net primary productivity are required to oxygenate the atmosphere due to a change in the atmospheric oxidative capacity, driven by the input stellar spectrum resulting in shifts in the intrafamily HO partitioning. Under the assumption that an atmosphere of an Earth-like planet survived and evolved during the early high-activity phase of an M dwarf to an Archean-type composition, a possible "Great Oxidation Event," analogous to that on Early Earth, would have occurred earlier in time after the atmospheric composition was reached, assuming the same atmospheric O sources and sinks as on early Earth. Key Words: Earth-like-Oxygen-M dwarf stars-Atmosphere-Biogeochemistry-Photochemistry-Biosignatures-Earth-like planets. Astrobiology 18, 856-872.

摘要

类地行星围绕 M 矮星运行,是在太阳系外寻找生命的主要目标。我们应用耦合大气生物地球化学模型来研究生物圈、岩石圈和大气之间的相互作用,以便深入了解类地行星围绕 M 矮星的大气演化,并了解影响这些行星上生物特征和气候的过程。这是第一项应用自动化学途径分析来量化类地行星中原始氧浓度的分子氧 (O) 产生和破坏途径的研究,该行星围绕 M 矮星 AD Leonis 运行在宜居带内,我们将其作为活跃 M 矮星的典型案例。主要的产生发生在上层大气中,来自二氧化碳光解,随后是催化氢氧化物自由基 (HO) 反应。最强的破坏不是在对流层中发生,这与 Gebauer 等人(2017 年)对太阳周围早期地球类似行星的情况不同,而是在中层大气中,水光解是最强的。结果还表明,尽管这些大气中的还原性气体(如氢气、甲烷和一氧化碳)浓度较高,但与围绕太阳的早期地球类似行星相比,这些大气对 O 的破坏性要小。因此,由于大气氧化能力的变化,需要更少的净初级生产力来使大气充氧,这种变化是由输入恒星光谱导致的,从而导致家族内 HO 分配的变化。假设一个类地行星的大气在 M 矮星的早期高活动阶段幸存并演化为原始类型的组成,那么在达到大气成分后,类似地球早期的“大氧化事件”可能会更早发生,假设大气中的 O 源和汇与早期地球相同。关键词:类地-O- M 矮星-大气-生物地球化学-光化学-生物特征-类地行星。天体生物学 18,856-872。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验