University of California at Davis, 1 Shields Avenue, Davis, California 95616, USA.
Inorg Chem. 2013 Jun 3;52(11):6248-59. doi: 10.1021/ic4007058. Epub 2013 May 17.
The main themes of this review are the mechanisms of the reactions of germanium and tin analogues of carbenes with isocyanides, CO, ammonia, and related molecules. The treatment of Ge(Ar(Me6))2 (Ar(Me6) = C6H3-2,6(C6H2-2,4,6-Me3)2) with MeNC or Bu(t)NC afforded 1:1 complexes, but the increase in the electron density at germanium leads to C-H activation at the isocyanide methyl or tert-butyl substituents. For MeNC, the initial adduct formation is followed by a migratory insertion of the MeNC carbon into a Ge-C(ipso) bond of an aryl substituent. The addition of excess MeNC led to sequential insertions of two further MeNC molecules. The third insertion led to methylisocyanide methyl group C-H activation, to afford an azagermacyclopentadienyl species. The Bu(t)NC complex (Ar(Me6))2GeCNBu(t) spontanously transforms into (Ar(Me6))2Ge(H)CN and isobutene with C-H activation of the Bu(t) substituent. The germylene Ge(Ar(Me6))(Ar(Pr(i)4)) [Ar(Pr(i)4) = C6H3-2,6(C6H3-2,6-Pr(i)2)2] reacted with CO to afford α-germyloxyketones. The initial step is the formation of a 1:1 complex, followed by migratory insertion into the Ge-C bond of the Ar(Pr(i)4) ligand to give Ar(Me6)GeC(O)Ar(Pr(i)4). Insertion of a second CO gave Ar(Me6)GeC(O)C(O)Ar(Pr(i)4), which rearranges to afford α-germyloxyketone. No reaction was observed for Sn(Ar(Me6))2 with RNC (R = Me, Bu(t)) or CO. Spectroscopic (IR) results and density functional theory (DFT) calculations showed that the reactivity can be rationalized on the basis of Ge-C (isocyanide or CO) Ge(n) → π* (ligand) back-bonding. The reaction of Ge(Ar(Me6))2 and Sn(Ar(Me6))2 with ammonia or hydrazines initially gave 1:1 adducts. However, DFT calculations show that there are ancillary N-H---N interactions with a second ammonia or hydrazine, which stabilizes the transition state to form germanium(IV) hydride (amido or hydrazido) products. For tin, arene elimination is favored by a buildup of electron density at the tin, as well as the greater polarity of the Sn-C(ipso) bond. Germanium(IV) products were observed upon reaction of Ge(Ar(Me6))2 with acids, whereas reactions of Sn(Ar(Me6))2 with acids did not give tin(II) products. In contrast to reactions with NH3, there is no buildup of negative charge at tin upon protonation, and its subsequent reaction with conjugate bases readily affords the tin(IV) products.
本文综述了锗和锡类似卡宾与异氰化物、CO、氨及相关分子反应的机理。MeNC 或 Bu(t)NC 与 Ge(Ar(Me6))2(Ar(Me6) = C6H3-2,6(C6H2-2,4,6-Me3)2)反应得到 1:1 的配合物,但锗原子上的电子密度增加导致异氰化物的甲基或叔丁基取代基上的 C-H 活化。对于 MeNC,最初的加合物形成后,MeNC 的碳通过迁移插入芳基取代基的 Ge-C(ipso)键。加入过量的 MeNC 导致进一步插入两个 MeNC 分子。第三次插入导致甲基异氰化物甲基 C-H 活化,生成氮杂锗环戊二烯基物种。Bu(t)NC 配合物 (Ar(Me6))2GeCNBu(t) 自发转化为 (Ar(Me6))2Ge(H)CN 和异丁烯,同时 Bu(t)取代基上的 C-H 也被活化。二芳基锗烯 Ge(Ar(Me6))(Ar(Pr(i)4)) [Ar(Pr(i)4) = C6H3-2,6(C6H3-2,6-Pr(i)2)2] 与 CO 反应生成 α-锗氧基酮。第一步是形成 1:1 的配合物,然后通过迁移插入 Ar(Pr(i)4)配体的 Ge-C 键生成 Ar(Me6)GeC(O)Ar(Pr(i)4)。插入第二个 CO 得到 Ar(Me6)GeC(O)C(O)Ar(Pr(i)4),它会重排生成 α-锗氧基酮。Sn(Ar(Me6))2 与 RNC(R = Me,Bu(t))或 CO 不反应。光谱(IR)结果和密度泛函理论(DFT)计算表明,基于 Ge-C(异氰化物或 CO)Ge(n) → π*(配体)反馈键,可以合理地解释反应性。Ge(Ar(Me6))2 和 Sn(Ar(Me6))2 与氨或肼最初生成 1:1 的加合物。然而,DFT 计算表明,存在第二个氨或肼的辅助 N-H---N 相互作用,这稳定了形成锗(IV)氢化物(酰胺或肼基)产物的过渡态。对于锡,芳基消除受到锡上电子密度增加以及 Sn-C(ipso)键极性增加的影响。当 Ge(Ar(Me6))2 与酸反应时,观察到锗(IV)产物,而 Sn(Ar(Me6))2 与酸反应时没有得到锡(II)产物。与与 NH3 的反应不同,质子化时锡上没有积聚负电荷,随后与共轭碱的反应很容易得到锡(IV)产物。