Suppr超能文献

被紫外线蒙蔽了双眼:为什么转录偶联核苷酸切除修复的研究重点分散了人们对 Cockayne 综合征神经疾病机制的理解。

Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease.

机构信息

Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, 5625 Fishers Lane, 3S-32, Bethesda, MD 20892, USA.

出版信息

DNA Repair (Amst). 2013 Aug;12(8):656-71. doi: 10.1016/j.dnarep.2013.04.018. Epub 2013 May 16.

Abstract

Cockayne syndrome (CS) is a devastating neurodevelopmental disorder, with growth abnormalities, progeriod features, and sun sensitivity. CS is typically considered to be a DNA repair disorder, since cells from CS patients have a defect in transcription-coupled nucleotide excision repair (TC-NER). However, cells from UV-sensitive syndrome patients also lack TC-NER, but these patients do not suffer from the neurologic and other abnormalities that CS patients do. Also, the neurologic abnormalities that affect CS patients (CS neurologic disease) are qualitatively different from those seen in NER-deficient XP patients. Therefore, the TC-NER defect explains the sun sensitive phenotype common to both CS and UVsS, but cannot explain CS neurologic disease. However, as CS neurologic disease is of much greater clinical significance than the sun sensitivity, there is a pressing need to understand its molecular basis. While there is evidence for defective repair of oxidative DNA damage and mitochondrial abnormalities in CS cells, here I propose that the defects in transcription by both RNA polymerases I and II that have been documented in CS cells provide a better explanation for many of the severe growth and neurodevelopmental defects in CS patients than defective DNA repair. The implications of these ideas for interpreting results from mouse models of CS, and for the development of treatments and therapies for CS patients are discussed.

摘要

科凯恩综合征(CS)是一种严重的神经发育障碍,具有生长异常、早老症特征和对阳光敏感。CS 通常被认为是一种 DNA 修复障碍,因为 CS 患者的细胞在转录偶联核苷酸切除修复(TC-NER)中存在缺陷。然而,紫外线敏感综合征患者的细胞也缺乏 TC-NER,但这些患者不会遭受 CS 患者所经历的神经和其他异常。此外,影响 CS 患者的神经异常(CS 神经疾病)与 NER 缺陷型 XP 患者所见的异常在性质上不同。因此,TC-NER 缺陷解释了 CS 和 UVsS 共有的阳光敏感表型,但不能解释 CS 神经疾病。然而,由于 CS 神经疾病的临床意义远大于阳光敏感,因此迫切需要了解其分子基础。虽然有证据表明 CS 细胞中存在氧化 DNA 损伤和线粒体异常的修复缺陷,但我在这里提出,CS 细胞中已记录到的 RNA 聚合酶 I 和 II 转录缺陷比 DNA 修复缺陷更能解释 CS 患者许多严重的生长和神经发育缺陷。这些观点对解释 CS 小鼠模型的结果以及为 CS 患者开发治疗方法和疗法具有重要意义。

相似文献

2
Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency.
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10151-6. doi: 10.1073/pnas.1610020113. Epub 2016 Aug 19.
6
Cockayne syndrome and xeroderma pigmentosum.
Neurology. 2000 Nov 28;55(10):1442-9. doi: 10.1212/wnl.55.10.1442.

引用本文的文献

1
Biological Models of Oxidative Purine DNA Damage in Neurodegenerative Disorders.
Antioxidants (Basel). 2025 May 11;14(5):578. doi: 10.3390/antiox14050578.
3
Spectrum of -Related Cockayne Syndrome (Type B): From Mild to Severe Forms.
Genes (Basel). 2024 Apr 18;15(4):508. doi: 10.3390/genes15040508.
5
TFIIH mutations can impact on translational fidelity of the ribosome.
Hum Mol Genet. 2023 Mar 20;32(7):1102-1113. doi: 10.1093/hmg/ddac268.
7
Cellular fractionation reveals transcriptome responses of human fibroblasts to UV-C irradiation.
Cell Death Dis. 2022 Feb 24;13(2):177. doi: 10.1038/s41419-022-04634-x.
9
Current and emerging roles of Cockayne syndrome group B (CSB) protein.
Nucleic Acids Res. 2021 Mar 18;49(5):2418-2434. doi: 10.1093/nar/gkab085.
10
Oxygen-Dependent Accumulation of Purine DNA Lesions in Cockayne Syndrome Cells.
Cells. 2020 Jul 11;9(7):1671. doi: 10.3390/cells9071671.

本文引用的文献

1
Sirt1 suppresses RNA synthesis after UV irradiation in combined xeroderma pigmentosum group D/Cockayne syndrome (XP-D/CS) cells.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):E212-20. doi: 10.1073/pnas.1213076110. Epub 2012 Dec 24.
2
XPD mutations in trichothiodystrophy hamper collagen VI expression and reveal a role of TFIIH in transcription derepression.
Hum Mol Genet. 2013 Mar 15;22(6):1061-73. doi: 10.1093/hmg/dds508. Epub 2012 Dec 5.
4
Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation.
Nucleic Acids Res. 2012 Sep 1;40(17):8392-405. doi: 10.1093/nar/gks565. Epub 2012 Jun 28.
5
Endogenous formation and repair of oxidatively induced G[8-5 m]T intrastrand cross-link lesion.
Nucleic Acids Res. 2012 Aug;40(15):7368-74. doi: 10.1093/nar/gks357. Epub 2012 May 11.
6
TFIIH: when transcription met DNA repair.
Nat Rev Mol Cell Biol. 2012 May 10;13(6):343-54. doi: 10.1038/nrm3350.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验