Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
Inorg Chem. 2013 Jun 3;52(11):6654-63. doi: 10.1021/ic400659q. Epub 2013 May 21.
Bis(toluene)chromium(0), Cr(0)(η(6)-C7H8)2 (3), readily reduced [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (1) and [1,2,5]thiadiazolo[3,4-b]pyrazine (2) in a tetrahydrofuran solvent with the formation of heterospin, S1 = S2 = ½, radical-ion salts 31 (4) and 32 (5) isolated in high yields. The salts 4 and 5 were characterized by single-crystal X-ray diffraction (XRD), solution and solid-state electron paramagnetic resonance, and magnetic susceptibility measurements in the temperature range 2-300 K. Despite the formal similarity of the salts, their crystal structures were very different and, in contrast to 4, in 5 anions were disordered. For the XRD structures of the salts, parameters of the Heisenberg spin Hamiltonian were calculated using the CASSCF/NEVPT2 and broken-symmetry density functional theory approaches, and the complex magnetic motifs featuring the dominance of antiferromagnetic (AF) interactions were revealed. The experimental χT temperature dependences of the salts were simulated using the Van Vleck formula and a diagonalization of the matrix of the Heisenberg spin Hamiltonian for the clusters of 12 paramagnetic species with periodic boundary conditions. According to the calculations and χT temperature dependence simulation, a simplified magnetic model can be suggested for the salt 4 with AF interactions between the anions (1···1, J1 = -5.77 cm(-1)) and anions and cations (1···3, J2 = -0.84 cm(-1)). The magnetic structure of the salt 5 is much more complex and can be characterized by AF interactions between the anions, 2···2, and by both AF and ferromagnetic (FM) interactions between the anions and cations, 2···3. The contribution from FM interactions to the magnetic properties of the salt 5 is in qualitative agreement with the positive value of the Weiss constant Θ (0.4 K), whereas for salt 4, the constant is negative (-7.1 K).
双(甲苯)铬(0),Cr(0)(η(6)-C7H8)2 (3),在四氢呋喃溶剂中容易还原[1,2,5]噻二唑[3,4-c][1,2,5]噻二唑(1)和[1,2,5]噻二唑[3,4-b]吡嗪(2),形成杂自旋,S1=S2=½,自由基离子盐31 (4)和32 (5)以高产率分离。盐 4 和 5 通过单晶 X 射线衍射(XRD)、溶液和固态电子顺磁共振以及 2-300 K 温度范围内的磁化率测量进行了表征。尽管盐的形式相似,但它们的晶体结构却非常不同,与 4 相反,在 5 中阴离子是无序的。对于盐的 XRD 结构,使用 CASSCF/NEVPT2 和破对称密度泛函理论方法计算了海森堡自旋哈密顿量的参数,并揭示了具有反铁磁(AF)相互作用优势的复杂磁基元。使用范维克公式和在具有周期性边界条件的 12 个顺磁体簇的海森堡自旋哈密顿量矩阵对角化模拟了盐的实验 χT 温度依赖性。根据计算和 χT 温度依赖性模拟,可以为阴离子之间存在反铁磁相互作用的盐 4(1···1,J1=-5.77 cm(-1))和阴离子与阳离子之间存在反铁磁相互作用的盐 4 提出简化的磁模型(1···3,J2=-0.84 cm(-1))。盐 5 的磁结构要复杂得多,可以用阴离子之间的反铁磁相互作用2···2和阴离子与阳离子之间的反铁磁和铁磁相互作用2···3来描述。盐 5 的磁性质的铁磁相互作用的贡献与正的魏斯常数 Θ(0.4 K)定性一致,而对于盐 4,常数为负(-7.1 K)。