Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Sci Signal. 2013 May 21;6(276):ra37. doi: 10.1126/scisignal.2003768.
Although bioinformatic analysis of the increasing numbers of diverse genome sequences and amount of functional data has provided insight into the evolution of signaling networks, bioinformatics approaches have limited application for understanding the evolution of highly divergent protein families. We used biochemical analyses to determine the in vitro properties of selected divergent components of the heterotrimeric guanine nucleotide-binding protein (G protein) signaling network to investigate signaling network evolution. In animals, G proteins are activated by cell-surface seven-transmembrane (7TM) receptors, which are named G protein-coupled receptors (GPCRs) and function as guanine nucleotide exchange factors (GEFs). In contrast, the plant G protein is intrinsically active, and a 7TM protein terminates G protein activity by functioning as a guanosine triphosphatase-activating protein (GAP). We showed that ancient regulation of the G protein active state is GPCR-independent and "self-activating," a property that is maintained in Bikonts, one of the two fundamental evolutionary clades containing eukaryotes, whereas G proteins of the other clade, the Unikonts, evolved from being GEF-independent to being GEF-dependent. Self-activating G proteins near the base of the Eukaryota are controlled by 7TM-GAPs, suggesting that the ancestral regulator of G protein activation was a GAP-functioning receptor, not a GEF-functioning GPCR. Our findings indicate that the GPCR paradigm describes a recently evolved network architecture found in a relatively small group of Eukaryota and suggest that the evolution of signaling network architecture is constrained by the availability of molecules that control the activation state of nexus proteins.
虽然对不断增加的多样化基因组序列和功能数据的生物信息学分析为信号转导网络的进化提供了深入了解,但生物信息学方法在理解高度分化的蛋白质家族的进化方面应用有限。我们使用生化分析来确定异三聚体鸟嘌呤核苷酸结合蛋白 (G 蛋白) 信号转导网络中选定的高度分化成分的体外特性,以研究信号转导网络的进化。在动物中,G 蛋白被细胞表面的七跨膜 (7TM) 受体激活,这些受体被称为 G 蛋白偶联受体 (GPCR),并作为鸟嘌呤核苷酸交换因子 (GEF) 发挥作用。相比之下,植物 G 蛋白是固有活性的,7TM 蛋白通过作为鸟苷三磷酸酶激活蛋白 (GAP) 发挥作用来终止 G 蛋白的活性。我们表明,G 蛋白活性状态的古老调控是 GPCR 独立的和“自我激活”的,这种特性在 Bikonts 中得以维持,Bikonts 是包含真核生物的两个基本进化分支之一,而另一个分支,Unikonts 的 G 蛋白从 GEF 独立进化到 GEF 依赖。真核生物基部的自我激活 G 蛋白受 7TM-GAP 控制,这表明 G 蛋白激活的原始调节剂是具有 GAP 功能的受体,而不是具有 GEF 功能的 GPCR。我们的发现表明,GPCR 范式描述了在相对较小的真核生物群体中发现的最近进化的网络架构,并表明信号转导网络架构的进化受到控制激活状态的分子的可用性的限制。