Suppr超能文献

真核 G 蛋白信号转导进化需要 G 蛋白偶联受体来激活。

Eukaryotic G protein signaling evolved to require G protein-coupled receptors for activation.

机构信息

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Sci Signal. 2013 May 21;6(276):ra37. doi: 10.1126/scisignal.2003768.

Abstract

Although bioinformatic analysis of the increasing numbers of diverse genome sequences and amount of functional data has provided insight into the evolution of signaling networks, bioinformatics approaches have limited application for understanding the evolution of highly divergent protein families. We used biochemical analyses to determine the in vitro properties of selected divergent components of the heterotrimeric guanine nucleotide-binding protein (G protein) signaling network to investigate signaling network evolution. In animals, G proteins are activated by cell-surface seven-transmembrane (7TM) receptors, which are named G protein-coupled receptors (GPCRs) and function as guanine nucleotide exchange factors (GEFs). In contrast, the plant G protein is intrinsically active, and a 7TM protein terminates G protein activity by functioning as a guanosine triphosphatase-activating protein (GAP). We showed that ancient regulation of the G protein active state is GPCR-independent and "self-activating," a property that is maintained in Bikonts, one of the two fundamental evolutionary clades containing eukaryotes, whereas G proteins of the other clade, the Unikonts, evolved from being GEF-independent to being GEF-dependent. Self-activating G proteins near the base of the Eukaryota are controlled by 7TM-GAPs, suggesting that the ancestral regulator of G protein activation was a GAP-functioning receptor, not a GEF-functioning GPCR. Our findings indicate that the GPCR paradigm describes a recently evolved network architecture found in a relatively small group of Eukaryota and suggest that the evolution of signaling network architecture is constrained by the availability of molecules that control the activation state of nexus proteins.

摘要

虽然对不断增加的多样化基因组序列和功能数据的生物信息学分析为信号转导网络的进化提供了深入了解,但生物信息学方法在理解高度分化的蛋白质家族的进化方面应用有限。我们使用生化分析来确定异三聚体鸟嘌呤核苷酸结合蛋白 (G 蛋白) 信号转导网络中选定的高度分化成分的体外特性,以研究信号转导网络的进化。在动物中,G 蛋白被细胞表面的七跨膜 (7TM) 受体激活,这些受体被称为 G 蛋白偶联受体 (GPCR),并作为鸟嘌呤核苷酸交换因子 (GEF) 发挥作用。相比之下,植物 G 蛋白是固有活性的,7TM 蛋白通过作为鸟苷三磷酸酶激活蛋白 (GAP) 发挥作用来终止 G 蛋白的活性。我们表明,G 蛋白活性状态的古老调控是 GPCR 独立的和“自我激活”的,这种特性在 Bikonts 中得以维持,Bikonts 是包含真核生物的两个基本进化分支之一,而另一个分支,Unikonts 的 G 蛋白从 GEF 独立进化到 GEF 依赖。真核生物基部的自我激活 G 蛋白受 7TM-GAP 控制,这表明 G 蛋白激活的原始调节剂是具有 GAP 功能的受体,而不是具有 GEF 功能的 GPCR。我们的发现表明,GPCR 范式描述了在相对较小的真核生物群体中发现的最近进化的网络架构,并表明信号转导网络架构的进化受到控制激活状态的分子的可用性的限制。

相似文献

1
Eukaryotic G protein signaling evolved to require G protein-coupled receptors for activation.
Sci Signal. 2013 May 21;6(276):ra37. doi: 10.1126/scisignal.2003768.
2
G protein activation without a GEF in the plant kingdom.
PLoS Genet. 2012 Jun;8(6):e1002756. doi: 10.1371/journal.pgen.1002756. Epub 2012 Jun 28.
3
The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits.
Int J Biol Sci. 2005;1(2):51-66. doi: 10.7150/ijbs.1.51. Epub 2005 Apr 1.
4
Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation.
Mol Biol Evol. 2016 Mar;33(3):820-37. doi: 10.1093/molbev/msv336. Epub 2015 Dec 10.
5
The GAPs, GEFs, GDIs and…now, GEMs: New kids on the heterotrimeric G protein signaling block.
Cell Cycle. 2017 Apr 3;16(7):607-612. doi: 10.1080/15384101.2017.1282584. Epub 2017 Mar 13.
6
Coactivation of G protein signaling by cell-surface receptors and an intracellular exchange factor.
Curr Biol. 2008 Feb 12;18(3):211-5. doi: 10.1016/j.cub.2008.01.007.
7
Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):E10319-E10328. doi: 10.1073/pnas.1707992114. Epub 2017 Nov 13.
8
Thematic minireview series: cell biology of G protein signaling.
J Biol Chem. 2015 Mar 13;290(11):6679-80. doi: 10.1074/jbc.R114.631093. Epub 2015 Jan 20.
9
Coordinate regulation of G protein signaling via dynamic interactions of receptor and GAP.
PLoS Comput Biol. 2008 Aug 15;4(8):e1000148. doi: 10.1371/journal.pcbi.1000148.

引用本文的文献

1
Phylogenetic and Structural Insights into Melatonin Receptors in Plants: Case Study in Jacq.
Plants (Basel). 2025 Jun 26;14(13):1952. doi: 10.3390/plants14131952.
2
A molecular dynamics study of membrane positioning for 7-transmembrane RGS proteins to modulate G-protein-mediated signaling in plants.
Comput Struct Biotechnol J. 2025 Apr 11;27:1529-1537. doi: 10.1016/j.csbj.2025.04.013. eCollection 2025.
4
Heterotrimeric G Protein-Mediated Signaling Is Involved in Stress-Mediated Growth Inhibition in .
Int J Mol Sci. 2023 Jul 3;24(13):11027. doi: 10.3390/ijms241311027.
5
Genome-wide characterization of Alfin-like (AL) genes in apple and functional identification of MdAL4 in response to drought stress.
Plant Cell Rep. 2023 Feb;42(2):395-408. doi: 10.1007/s00299-022-02966-8. Epub 2023 Jan 4.
6
The evolutionary conservation of eukaryotic membrane-bound adenylyl cyclase isoforms.
Front Pharmacol. 2022 Sep 27;13:1009797. doi: 10.3389/fphar.2022.1009797. eCollection 2022.
7
G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom.
Int J Mol Sci. 2022 Jun 11;23(12):6544. doi: 10.3390/ijms23126544.
8
New Horizons in Plant Cell Signaling.
Int J Mol Sci. 2022 May 23;23(10):5826. doi: 10.3390/ijms23105826.
9
Association of the receptor for activated C-kinase 1 with ribosomes in Plasmodium falciparum.
J Biol Chem. 2022 Jun;298(6):101954. doi: 10.1016/j.jbc.2022.101954. Epub 2022 Apr 20.
10
Distribution and the evolutionary history of G-protein components in plant and algal lineages.
Plant Physiol. 2022 Jun 27;189(3):1519-1535. doi: 10.1093/plphys/kiac153.

本文引用的文献

1
Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis.
Nat Cell Biol. 2012 Oct;14(10):1079-88. doi: 10.1038/ncb2568. Epub 2012 Sep 2.
2
G protein activation without a GEF in the plant kingdom.
PLoS Genet. 2012 Jun;8(6):e1002756. doi: 10.1371/journal.pgen.1002756. Epub 2012 Jun 28.
3
Differences in intradomain and interdomain motion confer distinct activation properties to structurally similar Gα proteins.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7275-9. doi: 10.1073/pnas.1202943109. Epub 2012 Apr 23.
4
The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi.
PLoS One. 2012;7(1):e29817. doi: 10.1371/journal.pone.0029817. Epub 2012 Jan 4.
5
Ric-8 proteins are molecular chaperones that direct nascent G protein α subunit membrane association.
Sci Signal. 2011 Nov 22;4(200):ra79. doi: 10.1126/scisignal.2002223.
6
Crystal structure of the β2 adrenergic receptor-Gs protein complex.
Nature. 2011 Jul 19;477(7366):549-55. doi: 10.1038/nature10361.
7
Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains.
Mol Biol Evol. 2012 Feb;29(2):531-44. doi: 10.1093/molbev/msr185. Epub 2011 Jul 18.
8
Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets.
Pharmacol Rev. 2011 Sep;63(3):728-49. doi: 10.1124/pr.110.003038. Epub 2011 Jul 7.
10
Ric-8B is a GTP-dependent G protein alphas guanine nucleotide exchange factor.
J Biol Chem. 2011 Jun 3;286(22):19932-42. doi: 10.1074/jbc.M110.163675. Epub 2011 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验