Suppr超能文献

新型嘧啶咪唑类化合物诱导型一氧化氮合酶二聚体抑制作用的机制。

Mechanism of inducible nitric-oxide synthase dimerization inhibition by novel pyrimidine imidazoles.

机构信息

Department of Biotechnology and Guha Center for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.

出版信息

J Biol Chem. 2013 Jul 5;288(27):19685-97. doi: 10.1074/jbc.M112.446542. Epub 2013 May 21.

Abstract

Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases.

摘要

诱导型一氧化氮合酶(iNOS)过度产生的一氧化氮(NO)与几种炎症、免疫和神经退行性疾病的病因有关。由于 NOS 的二聚化对于其活性是必需的,因此正在评估几种二聚化抑制剂,包括嘧啶咪唑,以用于 iNOS 的治疗抑制。然而,其作用的确切机制仍不清楚。在这里,我们使用快速停流动力学、凝胶过滤和分光光度分析,研究了嘧啶咪唑核心化合物及其衍生物(PID)对 iNOS 的抑制机制,该化合物具有低细胞毒性和对 iNOS 的高亲和力。PID 与 iNOS 血红素结合,生成不可逆的 PID-iNOS 单体复合物,不能被四氢生物蝶呤(H4B)和 l-精氨酸(Arg)转化为活性二聚体。我们利用 iNOS 加氧酶结构域(iNOSoxy)和两个单体突变体(K82AiNOSoxy 和 D92AiNOSoxy),它们可以或不可以被 H4B 诱导二聚化,来阐明 PID 与 iNOS 单体和二聚体结合的动力学。我们观察到,PID 对单体的表观亲和力比二聚体高 11 倍。PID 结合速率也对 H4B 和 Arg 结合位点的占有率敏感。PID 还可以与 RAW 细胞中合成的新生 iNOS 单体相互作用,防止其翻译后二聚化,并且还可以引起活性 iNOS 二聚体的不可逆单体化,从而完全实现 iNOS 的生理抑制。因此,我们的研究确立了 PID 作为一种多功能 iNOS 抑制剂,因此是一种潜在的体内工具,可用于检查 iNOS 在与其过度表达相关的疾病中的因果作用,以及对这些疾病的治疗控制。

相似文献

引用本文的文献

10
Computational Structural Biology of -nitrosylation of Cancer Targets.癌症靶点亚硝基化的计算结构生物学
Front Oncol. 2018 Aug 14;8:272. doi: 10.3389/fonc.2018.00272. eCollection 2018.

本文引用的文献

2
NO synthase: structures and mechanisms.一氧化氮合酶:结构与机制。
Nitric Oxide. 2010 Aug 1;23(1):1-11. doi: 10.1016/j.niox.2010.03.001. Epub 2010 Mar 18.
6
Structure-function studies on nitric oxide synthases.一氧化氮合酶的结构-功能研究
J Inorg Biochem. 2005 Jan;99(1):293-305. doi: 10.1016/j.jinorgbio.2004.10.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验