Centre for Vascular Research, The University of New South Wales, Kensington, NSW, Australia.
J Virol. 2013 Jul;87(14):8195-204. doi: 10.1128/JVI.00298-13. Epub 2013 May 22.
Almost half of the human genome is composed of transposable elements. The genomic structures and life cycles of some of these elements suggest they are a result of waves of retroviral infection and transposition over millions of years. The reduction of retrotransposition activity in primates compared to that in nonprimates, such as mice, has been attributed to the positive selection of several antiretroviral factors, such as apolipoprotein B mRNA editing enzymes. Among these, APOBEC3G is known to mutate G to A within the context of GG in the genome of endogenous as well as several exogenous retroelements (the underlining marks the G that is mutated). On the other hand, APOBEC3F and to a lesser extent other APOBEC3 members induce G-to-A changes within the nucleotide GA. It is known that these enzymes can induce deleterious mutations in the genome of retroviral sequences, but the evolution and/or inactivation of retroelements as a result of mutation by these proteins is not clear. Here, we analyze the mutation signatures of these proteins on large populations of long interspersed nuclear element (LINE), short interspersed nuclear element (SINE), and endogenous retrovirus (ERV) families in the human genome to infer possible evolutionary pressure and/or hypermutation events. Sequence context dependency of mutation by APOBEC3 allows investigation of the changes in the genome of retroelements by inspecting the depletion of G and enrichment of A within the APOBEC3 target and product motifs, respectively. Analysis of approximately 22,000 LINE-1 (L1), 24,000 SINE Alu, and 3,000 ERV sequences showed a footprint of GG→AG mutation by APOBEC3G and GA→AA mutation by other members of the APOBEC3 family (e.g., APOBEC3F) on the genome of ERV-K and ERV-1 elements but not on those of ERV-L, LINE, or SINE.
人类基因组的近一半由转座元件组成。这些元件中的一些基因组结构和生命周期表明,它们是数百万年来逆转录病毒感染和转座的结果。与非灵长类动物(如小鼠)相比,灵长类动物的逆转录转座活性降低,这归因于几种抗逆转录病毒因子的正选择,如载脂蛋白 B mRNA 编辑酶。在这些因子中,APOBEC3G 已知在内在和几种外源性逆转录元件的基因组中,将 GG 中的 G 突变为 A(带下划线的标记为突变的 G)。另一方面,APOBEC3F 和在较小程度上的其他 APOBEC3 成员在核苷酸 GA 内诱导 G 到 A 的变化。已知这些酶可以在逆转录序列的基因组中诱导有害突变,但这些蛋白质引起的逆转录元件的进化和/或失活尚不清楚。在这里,我们分析了这些蛋白质在人类基因组中大量长散布核元件(LINE)、短散布核元件(SINE)和内源性逆转录病毒(ERV)家族上的突变特征,以推断可能的进化压力和/或超突变事件。APOBEC3 的突变序列依赖性允许通过分别检查 APOBEC3 靶标和产物基序中 G 的耗竭和 A 的富集,来研究逆转录元件基因组的变化。对大约 22000 个 LINE-1(L1)、24000 个 SINE Alu 和 3000 个 ERV 序列的分析表明,APOBEC3G 导致 GG→AG 突变,其他 APOBEC3 家族成员(如 APOBEC3F)导致 GA→AA 突变,这发生在 ERV-K 和 ERV-1 元件的基因组上,但不在 ERV-L、LINE 或 SINE 上。