Gene Regulation Section, Laboratory of Molecular Biology and.
Carcinogenesis. 2013 Oct;34(10):2389-400. doi: 10.1093/carcin/bgt175. Epub 2013 May 22.
Despite recent advances, understanding of molecular genetic alterations underlying thyroid carcinogenesis remains unclear. One key question is how dynamic temporal changes in global genomic expression affect carcinogenesis as the disease progresses. To address this question, we used a mouse model that spontaneously develops follicular thyroid cancer similar to human cancer (Thrb (PV/PV) mice). Using complementary DNA microarrays, we compared global gene expression profiles of thyroid tumors of Thrb (PV/PV) mice with the age- and gender-matched thyroids of wild-type mice at 3 weeks and at 2, 4, 6 and 14 months. These time points covered the pathological progression from early hyperplasia to capsular invasion, vascular invasion and eventual metastasis. Microarray data indicated that 462 genes were upregulated (Up-cluster genes) and 110 genes were downregulated (Down-cluster genes). Three major expression patterns (trending up, cyclical and spiking up and then down) and two (trending down and cyclical) were apparent in the Up-cluster and Down-cluster genes, respectively. Functional clustering of tumor-related genes followed by Ingenuity Pathways Analysis identified the transforming growth factor β (TGF β)-mediated network as key signaling pathways. Further functional analyses showed sustained activation of TGFβ receptor-pSMAD2/3 signaling, leading to decreased expression of E-cadherin and increased expression of fibronectin, vimentin, collagens and laminins. These TGFβ-induced changes facilitated epithelial-to-mesenchymal transition, which promotes cancer invasion and migration. Thus, complex temporal changes in gene expression patterns drive thyroid cancer progression, and persistent activation of TGFβ-TGFRβII-pSMAD2/3 signaling leads to EMT, thus promoting metastasis. This study provides new understanding of progression and metastatic spread of human thyroid cancer.
尽管最近取得了一些进展,但对于甲状腺癌发生的分子遗传改变的理解仍不清楚。一个关键问题是,随着疾病的进展,全球基因组表达的动态时变如何影响癌变。为了解决这个问题,我们使用了一种类似于人类癌症的自发性发生滤泡状甲状腺癌的小鼠模型(Thrb(PV/PV)小鼠)。我们使用 cDNA 微阵列比较了 Thrb(PV/PV)小鼠的甲状腺肿瘤与同龄、同性别野生型小鼠的甲状腺在 3 周和 2、4、6 和 14 个月时的全基因组表达谱。这些时间点涵盖了从早期增生到包膜侵犯、血管侵犯和最终转移的病理进展过程。微阵列数据分析表明,有 462 个基因上调(上调簇基因),110 个基因下调(下调簇基因)。上调簇和下调簇基因分别呈现出 3 种主要表达模式(趋势上升、周期性上升和先上升后下降)和 2 种(趋势下降和周期性)。肿瘤相关基因的功能聚类和随后的 Ingenuity 通路分析确定转化生长因子β(TGFβ)介导的网络为关键信号通路。进一步的功能分析表明 TGFβ 受体-pSMAD2/3 信号持续激活,导致 E-钙黏蛋白表达降低,纤连蛋白、波形蛋白、胶原蛋白和层粘连蛋白表达增加。这些 TGFβ 诱导的变化促进了上皮间质转化,从而促进了癌症的侵袭和迁移。因此,基因表达模式的复杂时间变化驱动甲状腺癌的进展,而 TGFβ-TGFRβII-pSMAD2/3 信号的持续激活导致 EMT,从而促进转移。这项研究为理解人类甲状腺癌的进展和转移扩散提供了新的认识。