Suppr超能文献

Boron neutron capture enhancement of 252Cf brachytherapy.

作者信息

Beach J L, Schroy C B, Ashtari M, Harris M R, Maruyama Y

机构信息

Lexington Radiation Therapy Center, KY 40504.

出版信息

Int J Radiat Oncol Biol Phys. 1990 Jun;18(6):1421-7. doi: 10.1016/0360-3016(90)90317-d.

Abstract

Dosimetric and radiobiological studies were undertaken to investigate the potential enhancement in dose, dose distribution and cell killing effectiveness of 252Cf brachytherapy achievable when boron-10 enriched compounds are incorporated into simulated 252Cf brain implants. Thermal neutron distributions in a human head phantom containing a 252Cf source were measured by gold foil activation and calculated using a 1-dimensional transport code. This information was then used to modify measured event size distributions for 252Cf neutrons to determine the corresponding increase in dose and dose equivalent throughout the phantom. The addition of subtoxic levels of boron-10 to a typical 252Cf implant was found to significantly enhance both the absorbed dose and the high LET event frequency at distances of 3 to 5 cm from individual sources. Some unexpected geometric considerations are discussed. Reduced survival of cultured Chinese hamster cells correlated with the predicted increase in absorbed dose from the capture events with a concentration of about 60 micrograms 10B per ml in the culture medium. It was found that boron increased alpha (the "single-hit" parameter of the linear quadratic survival model) by 32% and decreased beta (the "double-hit" parameter) by 8%. The alpha/beta ratio increased to 4.34 Gy in the presence of boron, from 3.03 Gy in its absence. This translated to an 8% reduction in californium dose needed to effect 10% cell survival. It is concluded that there is a sufficiently high thermal neutron fluence present during californium brachytherapy for boron neutron capture dose augmentation to be feasible.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验