Suppr超能文献

基于全基因组代谢网络的天蓝色链霉菌工程菌改造提高 FK506 产量。

Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement.

机构信息

Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.

出版信息

Microb Cell Fact. 2013 May 24;12:52. doi: 10.1186/1475-2859-12-52.

Abstract

BACKGROUND

FK506 is an important immunosuppressant, which can be produced by Streptomyces tsukubaensis. However, the production capacity of the strain is very low. Hereby, a computational guided engineering approach was proposed in order to improve the intracellular precursor and cofactor availability of FK506 in S. tsukubaensis.

RESULTS

First, a genome-scale metabolic model of S. tsukubaensis was constructed based on its annotated genome and biochemical information. Subsequently, several potential genetic targets (knockout or overexpression) that guaranteed an improved yield of FK506 were identified by the recently developed methodology. To validate the model predictions, each target gene was manipulated in the parent strain D852, respectively. All the engineered strains showed a higher FK506 production, compared with D852. Furthermore, the combined effect of the genetic modifications was evaluated. Results showed that the strain HT-ΔGDH-DAZ with gdhA-deletion and dahp-, accA2-, zwf2-overexpression enhanced FK506 concentration up to 398.9 mg/L, compared with 143.5 mg/L of the parent strain D852. Finally, fed-batch fermentations of HT-ΔGDH-DAZ were carried out, which led to the FK506 production of 435.9 mg/L, 1.47-fold higher than the parent strain D852 (158.7 mg/L).

CONCLUSIONS

Results confirmed that the promising targets led to an increase in FK506 titer. The present work is the first attempt to engineer the primary precursor pathways to improve FK506 production in S. tsukubaensis with genome-scale metabolic network guided metabolic engineering. The relationship between model prediction and experimental results demonstrates the rationality and validity of this approach for target identification. This strategy can also be applied to the improvement of other important secondary metabolites.

摘要

背景

FK506 是一种重要的免疫抑制剂,可由链霉菌(Streptomyces tsukubaensis)产生。然而,该菌株的产量非常低。因此,本文提出了一种计算指导工程方法,以提高 FK506 在链霉菌中的细胞内前体和辅因子的可用性。

结果

首先,根据链霉菌的注释基因组和生化信息,构建了其基因组规模代谢模型。随后,利用最近开发的方法,确定了几个保证 FK506 产量提高的潜在遗传靶点(敲除或过表达)。为了验证模型预测,分别对亲本菌株 D852 中的每个靶基因进行了操作。与 D852 相比,所有工程菌株的 FK506 产量都有所提高。此外,还评估了遗传修饰的联合效应。结果表明,与亲本菌株 D852 相比,缺失 gdhA 和过表达 dahp、accA2、zwf2 的 HT-ΔGDH-DAZ 菌株的 FK506 浓度提高到 398.9 mg/L。最后,对 HT-ΔGDH-DAZ 进行分批补料发酵,FK506 的产量达到 435.9 mg/L,比亲本菌株 D852(158.7 mg/L)提高了 1.47 倍。

结论

结果证实,有前途的靶点可提高 FK506 的效价。本研究首次尝试利用基因组规模代谢网络指导代谢工程,对初级前体途径进行工程改造,以提高链霉菌中 FK506 的产量。模型预测与实验结果之间的关系证明了这种方法用于目标识别的合理性和有效性。该策略还可应用于提高其他重要次生代谢物的产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06c2/3680238/042fbacf4aef/1475-2859-12-52-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验