Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación at Universidad de Valladolid, Campus Miguel Delibes s/n., 47011 Valladolid, Spain.
Laboratory of Mathematics in Imaging, 1249 Boylston St, Boston, MA 02215 USA.
Neuroimage. 2013 Nov 1;81:26-48. doi: 10.1016/j.neuroimage.2013.04.096. Epub 2013 May 22.
Tract-based analysis from DTI has become a widely employed procedure to study the white matter of the brain and its alterations in neurological and neurosurgical pathologies. Automatic tractography selection methods, where a subset of detected tracts corresponding to a specific white matter structure are selected, are a key component of the DTI processing pipeline. Using automatic tractography selection, repeatable results free of intra and inter-expert variability can be obtained rapidly, without the need for cumbersome manual segmentation. Many of the current approaches for automatic tractography selection rely on a previous registration procedure using an atlas; hence, these methods are likely very sensitive to the accuracy of the registration. In this paper we show that the performance of the registration step is critical to the overall result. This effect can in turn affect the calculation of scalar parameters derived subsequently from the selected tracts and often used in clinical practice; we show that such errors may be comparable in magnitude to the subtle differences found in clinical studies to differentiate between healthy and pathological. As an alternative, we propose a tractography selection method based on the use of geometrical constraints specific for each fiber bundle. Our experimental results show that the approach proposed performs with increased robustness and accuracy with respect to other approaches in the literature, particularly in the presence of imperfect registration.
基于弥散张量成像(DTI)的束路径分析已成为研究大脑白质及其在神经和神经外科病理学中的变化的广泛应用程序。自动束路径选择方法是 DTI 处理管道的关键组成部分,其中选择与特定白质结构相对应的检测束的子集。使用自动束路径选择,可以快速获得可重复的结果,没有专家间和专家内的变异性,而无需繁琐的手动分割。当前许多用于自动束路径选择的方法都依赖于使用图谱的先前注册过程;因此,这些方法很可能对注册的准确性非常敏感。在本文中,我们表明,注册步骤的性能对于整体结果至关重要。这种影响反过来又会影响从所选束中随后计算的标量参数的计算,这些参数通常在临床实践中使用;我们表明,这些误差可能与临床研究中发现的用于区分健康和病理的细微差异相当。作为替代方案,我们提出了一种基于特定于每个纤维束的几何约束的束路径选择方法。我们的实验结果表明,与文献中的其他方法相比,所提出的方法在存在不完善的注册的情况下具有更高的鲁棒性和准确性。