Scientific Computing and Imaging Institute , Salt Lake City, UT , USA ; Faculty of Computers and Information, Cairo University , Cairo , Egypt.
IBM Almaden Research Center , San Jose, CA , USA.
Front Neurol. 2014 Dec 9;5:240. doi: 10.3389/fneur.2014.00240. eCollection 2014.
Diffusion-weighted imaging (DWI) is known to be prone to artifacts related to motion originating from subject movement, cardiac pulsation, and breathing, but also to mechanical issues such as table vibrations. Given the necessity for rigorous quality control and motion correction, users are often left to use simple heuristics to select correction schemes, which involves simple qualitative viewing of the set of DWI data, or the selection of transformation parameter thresholds for detection of motion outliers. The scientific community offers strong theoretical and experimental work on noise reduction and orientation distribution function (ODF) reconstruction techniques for HARDI data, where post-acquisition motion correction is widely performed, e.g., using the open-source DTIprep software (1), FSL (the FMRIB Software Library) (2), or TORTOISE (3). Nonetheless, effects and consequences of the selection of motion correction schemes on the final analysis, and the eventual risk of introducing confounding factors when comparing populations, are much less known and far beyond simple intuitive guessing. Hence, standard users lack clear guidelines and recommendations in practical settings. This paper reports a comprehensive evaluation framework to systematically assess the outcome of different motion correction choices commonly used by the scientific community on different DWI-derived measures. We make use of human brain HARDI data from a well-controlled motion experiment to simulate various degrees of motion corruption and noise contamination. Choices for correction include exclusion/scrubbing or registration of motion corrupted directions with different choices of interpolation, as well as the option of interpolation of all directions. The comparative evaluation is based on a study of the impact of motion correction using four metrics that quantify (1) similarity of fiber orientation distribution functions (fODFs), (2) deviation of local fiber orientations, (3) global brain connectivity via graph diffusion distance (GDD), and (4) the reproducibility of prominent and anatomically defined fiber tracts. Effects of various motion correction choices are systematically explored and illustrated, leading to a general conclusion of discouraging users from setting ad hoc thresholds on the estimated motion parameters beyond which volumes are claimed to be corrupted.
扩散加权成像(DWI)已知易受运动伪影的影响,这些伪影源于受试者运动、心脏搏动和呼吸等原因,也源于机械问题,如台桌振动。由于需要严格的质量控制和运动校正,用户通常只能使用简单的启发式方法来选择校正方案,这涉及到对 DWI 数据集的简单定性观察,或者选择用于检测运动异常值的变换参数阈值。科学界为 HARDI 数据的降噪和方向分布函数(ODF)重建技术提供了强有力的理论和实验工作,在 HARDI 数据中广泛进行后获取运动校正,例如,使用开源 DTIprep 软件(1)、FSL(FMRIB 软件库)(2)或 TORTOISE(3)。尽管如此,选择运动校正方案对最终分析的影响和在比较人群时引入混杂因素的最终风险,却知之甚少,远远超出了简单的直观猜测。因此,标准用户在实际环境中缺乏明确的指导方针和建议。本文报告了一个全面的评估框架,用于系统地评估科学界常用的不同运动校正选择对不同 DWI 衍生测量结果的影响。我们利用来自受控运动实验的人脑 HARDI 数据来模拟不同程度的运动损坏和噪声污染。校正选择包括剔除/清除运动损坏的方向或使用不同插值选择对其进行配准,以及所有方向的插值选项。基于使用四个指标量化(1)纤维方向分布函数(fODF)的相似性、(2)局部纤维方向的偏差、(3)通过图扩散距离(GDD)的全局脑连接性以及(4)突出和解剖定义的纤维束的可重复性的方法,对运动校正的影响进行了比较评估。系统地探索和说明了各种运动校正选择的效果,得出了一个一般性的结论,即不鼓励用户在声称受污染的体积之外,对估计运动参数设置特定的阈值。