CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal.
Math Biosci. 2013 Aug;244(2):154-64. doi: 10.1016/j.mbs.2013.05.005. Epub 2013 May 22.
We apply optimal control theory to a tuberculosis model given by a system of ordinary differential equations. Optimal control strategies are proposed to minimize the cost of interventions, considering reinfection and post-exposure interventions. They depend on the parameters of the model and reduce effectively the number of active infectious and persistent latent individuals. The time that the optimal controls are at the upper bound increase with the transmission coefficient. A general explicit expression for the basic reproduction number is obtained and its sensitivity with respect to the model parameters is discussed. Numerical results show the usefulness of the optimization strategies.
我们将最优控制理论应用于由常微分方程组给出的结核病模型。提出了最优控制策略,以最小化干预成本,同时考虑再感染和暴露后干预。这些策略取决于模型的参数,并有效地减少了活动性传染性和持续性潜伏个体的数量。最优控制达到上限的时间随着传播系数的增加而增加。得到了基本再生数的一般显式表达式,并讨论了其对模型参数的敏感性。数值结果表明了优化策略的有用性。