Suppr超能文献

在虚拟机中利用 GPU 实现 BioCloud。

Exploiting GPUs in virtual machine for BioCloud.

机构信息

Department of Information Technology, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756, Republic of Korea.

出版信息

Biomed Res Int. 2013;2013:939460. doi: 10.1155/2013/939460. Epub 2013 Apr 24.

Abstract

Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment.

摘要

最近,生物应用程序开始被重新实现到利用 GPU 的多核来提高计算性能的应用程序中。因此,通过在云计算环境中为虚拟机提供虚拟 GPU,许多生物应用程序将愿意进入云环境,以提高其计算性能,并利用无限的云计算资源,同时降低计算成本。在本文中,我们提出了一个 BioCloud 系统架构,使虚拟机能够在云计算环境中使用 GPU。由于之前的许多研究都集中在 GPU 在虚拟机之间的共享机制上,它们无法为计算吞吐量更为关键的生物应用程序提供足够的性能,而不是共享。所提出的系统利用了 PCI 总线的直通模式。通过使每个虚拟机都能够直接访问底层的 GPU,应用程序可以表现出与在本地环境中几乎相同的性能。此外,我们的方案通过使用 PCI-E 通道的热插拔设备特性来复用 GPU。通过按需在每个虚拟机中添加或删除 GPU,同一物理主机中的虚拟机可以时间共享他们的 GPU。我们使用 Xen VMM 和 NVIDIA GPU 实现了所提出的系统,并表明我们的原型在云计算环境中对生物 GPU 应用程序非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e1/3654629/9fd47905be28/BMRI2013-939460.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验