Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, CA, 90095, USA.
Int J Comput Assist Radiol Surg. 2017 Apr;12(4):669-680. doi: 10.1007/s11548-016-1473-5. Epub 2016 Aug 25.
In this paper, a multi-GPU cloud-based server (MGCS) framework is presented for dose calculations, exploring the feasibility of remote computing power for parallelization and acceleration of computationally and time intensive radiotherapy tasks in moving toward online adaptive therapies.
An analytical model was developed to estimate theoretical MGCS performance acceleration and intelligently determine workload distribution. Numerical studies were performed with a computing setup of 14 GPUs distributed over 4 servers interconnected by a 1 Gigabits per second (Gbps) network. Inter-process communication methods were optimized to facilitate resource distribution and minimize data transfers over the server interconnect.
The analytically predicted computation time predicted matched experimentally observations within 1-5 %. MGCS performance approached a theoretical limit of acceleration proportional to the number of GPUs utilized when computational tasks far outweighed memory operations. The MGCS implementation reproduced ground-truth dose computations with negligible differences, by distributing the work among several processes and implemented optimization strategies.
The results showed that a cloud-based computation engine was a feasible solution for enabling clinics to make use of fast dose calculations for advanced treatment planning and adaptive radiotherapy. The cloud-based system was able to exceed the performance of a local machine even for optimized calculations, and provided significant acceleration for computationally intensive tasks. Such a framework can provide access to advanced technology and computational methods to many clinics, providing an avenue for standardization across institutions without the requirements of purchasing, maintaining, and continually updating hardware.
本文提出了一种基于多 GPU 的云服务器(MGCS)框架,用于剂量计算,探索远程计算能力在实现在线自适应治疗中对计算密集型和时间密集型放射治疗任务进行并行化和加速的可行性。
开发了一个分析模型来估计理论上的 MGCS 性能加速,并智能地确定工作负载分配。使用由 4 台服务器组成的计算设置进行数值研究,这些服务器通过 1Gbps 的网络相互连接,分布有 14 个 GPU。优化了进程间通信方法,以促进资源分配并最小化服务器互连上的数据传输。
分析预测的计算时间与实验观察值在 1-5%以内相匹配。当计算任务远远超过内存操作时,MGCS 的性能接近与所使用的 GPU 数量成比例的理论加速极限。MGCS 实现通过在多个进程之间分配工作并实施优化策略,以可忽略的差异重现了真实剂量计算。
结果表明,基于云计算的计算引擎是一种可行的解决方案,使临床医生能够利用快速剂量计算来进行高级治疗计划和自适应放射治疗。即使对于优化计算,基于云的系统也能够超过本地机器的性能,并为计算密集型任务提供显著的加速。这样的框架可以为许多临床医生提供访问先进技术和计算方法的途径,而无需购买、维护和不断更新硬件的要求,从而为机构之间的标准化提供了一条途径。