Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States.
ACS Nano. 2013 May 28;7(5):3778-96. doi: 10.1021/nn400702r.
Cell penetrating peptides facilitate efficient intracellular uptake of diverse materials ranging from small contrast agents to larger proteins and nanoparticles. However, a significant impediment remains in the subsequent compartmentalization/endosomal sequestration of most of these cargoes. Previous functional screening suggested that a modular peptide originally designed to deliver palmitoyl-protein thioesterase inhibitors to neurons could mediate endosomal escape in cultured cells. Here, we detail properties relevant to this peptide's ability to mediate cytosolic delivery of quantum dots (QDs) to a wide range of cell-types, brain tissue culture and a developing chick embryo in a remarkably nontoxic manner. The peptide further facilitated efficient endosomal escape of large proteins, dendrimers and other nanoparticle materials. We undertook an iterative structure-activity relationship analysis of the peptide by discretely modifying key components including length, charge, fatty acid content and their order using a comparative, semiquantitative assay. This approach allowed us to define the key motifs required for endosomal escape, to select more efficient escape sequences, along with unexpectedly identifying a sequence modified by one methylene group that specifically targeted QDs to cellular membranes. We interpret our results within a model of peptide function and highlight implications for in vivo labeling and nanoparticle-mediated drug delivery by using different peptides to co-deliver cargoes to cells and engage in multifunctional labeling.
细胞穿透肽能够有效地将各种物质(从小的对比剂到大的蛋白质和纳米颗粒)内吞到细胞内。然而,大多数这些货物的后续区室化/内体隔离仍然存在一个显著的障碍。先前的功能筛选表明,最初设计用于将棕榈酰蛋白硫酯酶抑制剂递送到神经元的模块化肽能够在培养细胞中介导内体逃逸。在这里,我们详细描述了这种肽介导量子点(QDs)向广泛的细胞类型、脑组织培养物和发育中的鸡胚胞质内递送的能力相关的特性,其方式非常无毒。该肽进一步促进了大蛋白质、树枝状聚合物和其他纳米颗粒材料的有效内体逃逸。我们通过离散地修饰关键组件(包括长度、电荷、脂肪酸含量及其顺序),使用比较、半定量测定对肽进行了迭代的结构-活性关系分析。这种方法使我们能够定义内体逃逸所需的关键基序,选择更有效的逃逸序列,同时意外地确定了一个被一个亚甲基组修饰的序列,该序列将 QDs 特异性靶向到细胞膜。我们在肽功能模型内解释我们的结果,并强调了使用不同的肽共同递运送细胞的货物和进行多功能标记的体内标记和纳米颗粒介导的药物递送的意义。