University of Oklahoma Bioengineering Center, University of Oklahoma, 202 West Boyd St. Norman, OK 73019, USA.
Chemphyschem. 2013 Jul 22;14(10):2149-58. doi: 10.1002/cphc.201300146. Epub 2013 May 27.
Herein, both electrostatic and covalent layer-by-layer assembly were used for the construction of multicomposite thin films using a ferrocene-modified linear poly(ethylenimine) redox polymer (Fc-C6-LPEI) as the cationic polyelectrolye, and poly(acrylic acid) (PAA), poly(glutamic acid) (PGA), or glucose oxidase (GOX) as the negative polyelectrolyte. The assembly of the multilayer films was characterized by cyclic voltammetry (CV), UV/Vis spectroscopy, and ellipsometry with the enzymatic response of the films containing GOX being characterized via constant potential amperometry. CV measurements suggested that the successful buildup of multilayer films was dependent upon the nature of the anionic polyelectrolyte used. Electrostatic assembly of films composed of Fc-C6-LPEI and either PAA or PGA produced large oxidation peak current densities of 630 and 670 μA cm(-2), respectively, during cyclic voltammetry. Increased measured absorbance by UV/Vis spectroscopy and increased measured film thicknesses (400-600 nm) by ellipsometry provided additional evidence of successful film formation. In contrast, the films incorporating GOX that were electrostatically assembled surprisingly produced significantly lower electrochemical responses (12 μA cm(-2)), low absorbance values, and reduced film thicknesses (15 nm), and glucose electro-oxidation current densities less than 1 μA cm(-2), which all suggested unstable or minimal film formation. Subsequently, we developed a covalent layer-by-layer approach to fabricate films of Fc-C6-LPEI/GOX by covalently linking the amine groups of Fc-C6-LPEI to the aldehyde groups of periodate-oxidized glucose oxidase. Covalent assembly of the Fc-C6-LPEI/GOX films produced oxidation peak current densities during cyclic voltammetry of 40 μA cm(-2) and glucose electro-oxidation current densities of 220 μA cm(-2). These films also showed an increase in their thicknesses (140 nm) relative to the electrostatic GOX films. For the films containing either PAA or PGA, the pH of the polymer solutions used for construction was found to have a significant effect on the response of the multilayer films, and the electrochemical response of the Fc-C6-LPEI/PAA, Fc-C6-LPEI/PGA, or covalently assembled Fc-C6-LPEI/GOX films could be tuned by varying the number of bilayers (n=1-16) in the film. These results are important because this is the first report of the use of the novel Fc-C6-LPEI redox polymer in the successful development of multicomposite layer-by-layer films. The electrochemical response achieved with the covalently assembled Fc-C6-LPEI/GOX films demonstrates that this redox polymer and layer-by-layer assembly technique can be used for possible biosensor and biofuel applications, and the success of multiple anionic polyelectrolytes could lead to additional applications with other enzyme systems.
在此,我们使用一种二茂铁修饰的线性聚(乙二胺)氧化还原聚合物(Fc-C6-LPEI)作为阳离子聚合物,使用聚(丙烯酸)(PAA)、聚(谷氨酸)(PGA)或葡萄糖氧化酶(GOX)作为阴离子聚合物,通过静电和共价层层组装技术构建了多种复合薄膜。通过循环伏安法(CV)、紫外/可见光谱法和椭圆偏振法对多层膜的组装进行了表征,并通过恒电位安培法对含有 GOX 的膜的酶响应进行了表征。CV 测量表明,多层膜的成功构建取决于所使用的阴离子聚合物的性质。由 Fc-C6-LPEI 和 PAA 或 PGA 组成的静电组装膜在循环伏安法中产生了 630 和 670 μA cm(-2) 的大氧化峰电流密度。紫外/可见光谱法测量的吸光度增加和椭圆偏振法测量的膜厚度增加(400-600nm)提供了成功形成膜的额外证据。相比之下,静电组装的包含 GOX 的膜出人意料地产生了显著更低的电化学响应(12μA cm(-2))、低吸光度值和减少的膜厚度(约 15nm),以及小于 1μA cm(-2)的葡萄糖电氧化电流密度,这一切都表明膜形成不稳定或最小。随后,我们通过将 Fc-C6-LPEI 的伯胺基团与高碘酸盐氧化的葡萄糖氧化酶的醛基共价连接,开发了一种共价层层组装方法来制备 Fc-C6-LPEI/GOX 膜。Fc-C6-LPEI/GOX 膜的共价组装在循环伏安法中产生了 40μA cm(-2)的氧化峰电流密度和 220μA cm(-2)的葡萄糖电氧化电流密度。这些膜的厚度也相对于静电组装的 GOX 膜增加了约 140nm。对于含有 PAA 或 PGA 的膜,用于构建的聚合物溶液的 pH 值被发现对多层膜的响应有显著影响,并且可以通过改变膜中的双层数(n=1-16)来调节 Fc-C6-LPEI/PAA、Fc-C6-LPEI/PGA 或共价组装的 Fc-C6-LPEI/GOX 膜的电化学响应。这些结果很重要,因为这是首次报道使用新型 Fc-C6-LPEI 氧化还原聚合物成功开发多种复合层层膜。通过共价组装的 Fc-C6-LPEI/GOX 膜实现的电化学响应表明,这种氧化还原聚合物和层层组装技术可用于可能的生物传感器和生物燃料电池应用,并且多种阴离子聚合物的成功应用可能会导致其他酶系统的更多应用。