School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.
ChemSusChem. 2013 Jul;6(7):1216-23. doi: 10.1002/cssc.201300172. Epub 2013 May 24.
Carbon dioxide emitted from existing coal-fired power plants is a major environmental concern due to possible links to global climate change. In this study, we expand upon previous work focused on aminosilane-functionalized polymeric hollow-fiber sorbents by introducing a new class of polyethyleneimine (PEI)-functionalized polymeric hollow-fiber sorbents for post-combustion carbon dioxide capture. Different molecular weight PEIs (M(n) ≈600, 1800, 10,000, and 60,000) were studied as functional groups on polyamide imide (PAI, Torlon) hollow fibers. This imide ring-opening modification introduces two amide functional groups and was confirmed by FTIR attenuated total reflectance spectroscopy. The carbon dioxide equilibrium sorption capacities of PEI-functionalized Torlon materials were characterized by using both pressure decay and gravimetric sorption methods. For equivalent PEI concentrations, PAI functionalized with lower molecular weight PEI exhibited higher carbon dioxide capacities. The effect of water in the ring-opening reaction was also studied. Up to a critical value, water in the reaction mixture enhanced the degree of functionalization of PEI to Torlon and resulted in higher carbon dioxide uptake within the functionalized material. Above the critical value, roughly 15% w/w water, the fiber morphology was lost and the fiber was soluble in the solvent. PEI-functionalized (Mn ≈600) PAI under optimal reaction conditions was observed to have the highest CO2 uptake: 4.9 g CO2 per 100 g of polymer (1.1 mmol g(-1)) at 0.1 bar and 35 °C with dry 10% CO2/90% N2 feed for thermogravimetric analysis. By using water-saturated feeds (10% CO2 /90% N2 dry basis), CO2 sorption was observed to increase to 6.0 g CO2 per 100 g of sorbent (1.4 mmol g(-1)). This material also demonstrated stability in cyclic adsorption-desorption operations, even under wet conditions at which some highly effective sorbents tend to lose performance. Thus, PEI-functionalized PAI fibers can be considered as promising material for post-combustion CO2 capture.
由于可能与全球气候变化有关,现有燃煤电厂排放的二氧化碳是一个主要的环境问题。在这项研究中,我们通过引入一类新的聚乙烯亚胺(PEI)功能化聚合物中空纤维吸附剂,对以前专注于氨基硅烷功能化聚合物中空纤维吸附剂的工作进行了扩展,用于燃烧后二氧化碳捕集。研究了不同分子量的聚乙烯亚胺(M(n)≈600、1800、10000 和 60000)作为聚酰胺酰亚胺(PAI、Torlon)中空纤维上的功能基团。这种酰亚胺开环修饰引入了两个酰胺官能团,并通过傅里叶变换衰减全反射光谱(FTIR-ATR)得到证实。通过压力衰减和重量吸附法对 PEI 功能化 Torlon 材料的二氧化碳平衡吸附容量进行了表征。对于等效的 PEI 浓度,用低分子量 PEI 功能化的 PAI 表现出更高的二氧化碳容量。还研究了开环反应中水的影响。在达到临界值之前,反应混合物中的水增强了 PEI 对 Torlon 的功能化程度,并导致功能化材料中更高的二氧化碳吸收量。超过临界值,约 15%w/w 的水,纤维形态丢失,纤维在溶剂中可溶。在最佳反应条件下,观察到 PEI 功能化(Mn≈600)PAI 具有最高的 CO2 吸收量:在 0.1 巴和 35°C 下,在干 10%CO2/90%N2 进料下,每 100 克聚合物吸收 4.9 克 CO2(1.1mmol/g),用于热重分析。使用水饱和的进料(10%CO2/90%N2 干基),观察到 CO2 吸附量增加到每 100 克吸附剂 6.0 克 CO2(1.4mmol/g)。即使在一些高效吸附剂容易失去性能的湿条件下,该材料在循环吸附-解吸操作中也表现出稳定性。因此,PEI 功能化 PAI 纤维可以被认为是一种有前途的用于燃烧后 CO2 捕集的材料。