Suppr超能文献

纤维吸附剂——用于基于吸附的气体分离的多功能平台。

Fiber Sorbents - A Versatile Platform for Sorption-Based Gas Separations.

作者信息

Marreiros João, Wang Yuxiang, Song MinGyu, Koros William J, Realff Matthew J, Jones Christopher W, Lively Ryan P

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.

出版信息

Acc Mater Res. 2024 Dec 12;6(1):6-16. doi: 10.1021/accountsmr.4c00201. eCollection 2025 Jan 24.

Abstract

Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates. These structures overcome limitations such as elevated pressure drops commonly recorded across powder adsorption beds but often accrue thermal limitations arising from elevated particle density and aggregation, which ultimately cap their maximum separation performance. Furthermore, the harsh mechanical strain to which powder particles are subjected during contactor fabrication, in the form of extrusion/compression forces, can result in partial pore occlusion and framework degradation, further limiting their performance. Here, we present the development of porous fiber sorbents as an alternative sorbent contactor design capable of addressing sorbent processability limitations while enabling an array of performance-maximizing heat integration capabilities. This new sorbent form factor leverages pre-existing know-how from hollow fiber spinning to produce fiber-shaped sorbent contactors through the phase inversion of known polymers in a process known as dry-jet/wet quenching. The process of phase inversion allows microporous sorbent particles to be latched onto a macroporous polymer matrix under mild processing conditions, thus making it compatible with soft porous materials prone to amorphization under traditional pelletization conditions. Sorbent fibers can be created with different geometries through control of the spinning apparatus and process, offering the possibility to produce monolithic and hollow fibers alike, the latter of which can be integrated with thermalization fluid flows. In this Account, we summarize our progress in the field of fiber sorbents from both design and application standpoints. We further guide the reader through the evolution of this field from the early inceptive work on zeolite hollow fibers to recent developments on MOF fibers. We highlight the versatile nature of fiber sorbents, both from the composition, fabrication and structure points of view, and further demonstrate how fiber sorbents offer alternative paths in tackling new and challenging chemical separation challenges like direct air capture (DAC), with a final perspective on the future of the field.

摘要

对高纯度精细化学品的需求不断增加,以及大规模分离过程强化的推动,促使人们在开发具有基于吸附分离潜力的高度工程化多孔材料方面开展了大量工作。虽然多孔材料中的吸附分离为长期存在的基于热的方法提供了节能替代方案,但许多这些吸附剂的颗粒性质有时限制了它们在高通量应用(如气体分离)中的大规模应用,因为对于气体分离而言,所需的高进料流速和气体速度会产生高昂的运行成本。这些可加工性限制历来通过粉末成型方法来解决,这些方法旨在制造基于颗粒、珠子或整料的结构化吸附剂接触器,通常通过挤出获得。这些结构克服了诸如在粉末吸附床中通常记录到的高压降等限制,但往往会产生由于颗粒密度升高和聚集而导致的热限制,这最终限制了它们的最大分离性能。此外,在接触器制造过程中,粉末颗粒受到的以挤压/压缩力形式存在的苛刻机械应变会导致部分孔隙堵塞和骨架降解,进一步限制了它们的性能。在这里,我们展示了多孔纤维吸附剂的开发,作为一种能够解决吸附剂可加工性限制同时实现一系列性能最大化热集成能力的替代吸附剂接触器设计。这种新的吸附剂外形利用了中空纤维纺丝的现有技术,通过在一种称为干喷/湿淬的过程中使已知聚合物相转化来生产纤维状吸附剂接触器。相转化过程允许微孔吸附剂颗粒在温和的加工条件下锁定在大孔聚合物基质上,从而使其与在传统造粒条件下容易非晶化的软质多孔材料兼容。通过控制纺丝设备和工艺,可以制造出具有不同几何形状的吸附剂纤维,从而有可能生产整体纤维和中空纤维,后者可以与热交换流体流集成。在本综述中,我们从设计和应用的角度总结了我们在纤维吸附剂领域的进展。我们进一步引导读者了解该领域从早期对沸石中空纤维的开创性工作到最近对金属有机框架(MOF)纤维的发展。我们从组成、制造和结构的角度突出了纤维吸附剂的多功能性质,并进一步展示了纤维吸附剂如何为应对诸如直接空气捕获(DAC)等新的具有挑战性的化学分离挑战提供替代途径,并对该领域的未来进行了展望。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验