Department of Electrical and Electronics Engineering, Department of Physics, UNAM Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 Turkey.
ACS Nano. 2013 Jun 25;7(6):4799-809. doi: 10.1021/nn305259g. Epub 2013 Jun 3.
In nanocrystal quantum dots (NQDs), generating multiexcitons offers an enabling tool for enhancing NQD-based devices. However, the photocharging effect makes understanding multiexciton kinetics in NQD solids fundamentally challenging, which is critically important for solid-state devices. To date, this lack of understanding and the spectral-temporal aspects of the multiexciton recombination still remain unresolved in solid NQD ensembles, which is mainly due to the confusion with recombination of carriers in charged NQDs. In this work, we reveal the spectral-temporal behavior of biexcitons (BXs) in the presence of photocharging using near-unity quantum yield CdSe/CdS NQDs exhibiting substantial suppression of Auger recombination. Here, recombinations of biexcitons and single excitons (Xs) are successfully resolved in the presence of trions in the ensemble measurements of time-correlated single-photon counting at variable excitation intensities and varying emission wavelengths. The spectral behaviors of BXs and Xs are obtained for three NQD samples with different core sizes, revealing the strength tunability of the X-X interaction energy in these NQDs. The extraction of spectrally resolved X, BX, and trion kinetics, which are otherwise spectrally unresolved, is enabled by our approach introducing integrated time-resolved fluorescence. The results are further experimentally verified by cross-checking excitation intensity and exposure time dependencies as well as the temporal evolutions of the photoluminescence spectra, all of which prove to be consistent. The BX and X energies are also confirmed by theoretical calculations. These findings fill an important gap in understanding the spectral dynamics of multiexcitons in such NQD solids under the influence of photocharging effects, paving the way to engineering of multiexciton kinetics in nanocrystal optoelectronics, including NQD-based lasing, photovoltaics, and photodetection.
在纳米晶体量子点 (NQD) 中,产生多激子为增强基于 NQD 的器件提供了一种可行的工具。然而,光电充电效应使得理解 NQD 中的多激子动力学具有根本挑战性,这对于固态器件至关重要。迄今为止,这种缺乏理解以及固态 NQD 中多激子复合的光谱-时间方面仍然没有得到解决,这主要是由于对带电 NQD 中载流子复合的混淆。在这项工作中,我们揭示了使用近量子产率 CdSe/CdS NQD 存在光电充电时双激子 (BX) 的光谱-时间行为,这些 NQD 表现出对俄歇复合的显著抑制。在这里,在集体测量中,通过在不同的激发强度和不同的发射波长下,成功地分辨了在三重态存在下的双激子和单激子 (X) 的复合。通过对三个具有不同核心尺寸的 NQD 样品进行时间相关单光子计数的集体测量,获得了 BX 和 X 的光谱行为,揭示了这些 NQD 中 X-X 相互作用能的强度可调性。通过引入集成时间分辨荧光,实现了对光谱分辨的 X、BX 和三重态动力学的提取,否则这些动力学是光谱不可分辨的。通过交叉检查激发强度和暴露时间依赖性以及光致发光光谱的时间演化,进一步实验验证了这些结果,所有这些结果都证明是一致的。通过理论计算也证实了 BX 和 X 的能量。这些发现填补了在光电充电效应影响下理解这种 NQD 中多激子光谱动力学的重要空白,为在纳米晶体光电学中工程化多激子动力学铺平了道路,包括基于 NQD 的激光、光伏和光电探测。