Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
Bioinformatics. 2013 Aug 1;29(15):1910-2. doi: 10.1093/bioinformatics/btt303. Epub 2013 May 28.
High-throughput phenotypic assays reveal information about the molecules that modulate biological processes, such as a disease phenotype and a signaling pathway. In these assays, the identification of hits along with their molecular targets is critical to understand the chemical activities modulating the biological system. Here, we present HitPick, a web server for identification of hits in high-throughput chemical screenings and prediction of their molecular targets. HitPick applies the B-score method for hit identification and a newly developed approach combining 1-nearest-neighbor (1NN) similarity searching and Laplacian-modified naïve Bayesian target models to predict targets of identified hits. The performance of the HitPick web server is presented and discussed.
The server can be accessed at http://mips.helmholtz-muenchen.de/proj/hitpick.
高通量表型分析可以揭示调节生物过程的分子信息,如疾病表型和信号通路。在这些分析中,确定命中物及其分子靶标对于理解调节生物系统的化学活性至关重要。在这里,我们介绍了 HitPick,这是一个用于识别高通量化学筛选中命中物并预测其分子靶标的网络服务器。HitPick 应用 B 分数方法进行命中物识别,并采用新开发的方法,结合 1 最近邻(1NN)相似性搜索和拉普拉斯修正的朴素贝叶斯靶模型来预测已识别命中物的靶标。介绍并讨论了 HitPick 网络服务器的性能。
该服务器可在 http://mips.helmholtz-muenchen.de/proj/hitpick 访问。