Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA.
Nature. 2013 May 30;497(7451):603-6. doi: 10.1038/nature12145.
The Arctic Ocean has an important role in Earth's climate, both through surface processes such as sea-ice formation and transport, and through the production and export of waters at depth that contribute to the global thermohaline circulation. Deciphering the deep Arctic Ocean's palaeo-oceanographic history is a crucial part of understanding its role in climatic change. Here we show that sedimentary ratios of the radionuclides thorium-230 ((230)Th) and protactinium-231 ((231)Pa), which are produced in sea water and removed by particle scavenging on timescales of decades to centuries, respectively, record consistent evidence for the export of (231)Pa from the deep Arctic and may indicate continuous deep-water exchange between the Arctic and Atlantic oceans throughout the past 35,000 years. Seven well-dated box-core records provide a comprehensive overview of (231)Pa and (230)Th burial in Arctic sediments during glacial, deglacial and interglacial conditions. Sedimentary (231)Pa/(230)Th ratios decrease nearly linearly with increasing water depth above the core sites, indicating efficient particle scavenging in the upper water column and greater influence of removal by lateral transport at depth. Although the measured (230)Th burial is in balance with its production in Arctic sea water, integrated depth profiles for all time intervals reveal a deficit in (231)Pa burial that can be balanced only by lateral export in the water column. Because no enhanced sink for (231)Pa has yet been found in the Arctic, our records suggest that deep-water exchange through the Fram strait may export (231)Pa. Such export may have continued for the past 35,000 years, suggesting a century-scale replacement time for deep waters in the Arctic Ocean since the most recent glaciation and a persistent contribution of Arctic waters to the global ocean circulation.
北冰洋在地球气候中具有重要作用,这既体现在海冰形成和运输等表面过程中,也体现在通过深海洋水的生成和输出对全球热盐环流的贡献中。解读深海北冰洋的古海洋学历史是理解其在气候变化中作用的关键部分。在这里,我们表明,放射性核素钍-230((230)Th)和钍-231((231)Pa)的沉积比值,分别在数十年至数百年的时间尺度上在海水中生成并通过颗粒吸附去除,记录了来自北极深处的(231)Pa 持续输出的一致证据,这可能表明在过去的 35000 年中,北极和大西洋之间一直存在着连续的深层水交换。七个经过良好定年的箱芯记录提供了北极沉积物中(231)Pa 和(230)Th 在冰期、冰消期和间冰期条件下埋藏的综合概述。沉积的(231)Pa/(230)Th 比值随芯点上方水深的增加呈近线性下降,表明在水柱上层的颗粒吸附效率高,在深处通过侧向输运的去除影响更大。尽管测量的(230)Th 埋藏量与北冰洋海水中的生成量相平衡,但所有时间间隔的综合深度剖面显示(231)Pa 埋藏量不足,只有通过水柱中的侧向输出才能平衡。由于在北极尚未发现增强的(231)Pa 汇,我们的记录表明,通过弗拉姆海峡的深层水交换可能会输出(231)Pa。这种输出可能在过去的 35000 年中一直持续,这表明自最近一次冰川期以来,北极海洋的深层水每 100 年就会被替换一次,并且北极水对全球海洋环流的持续贡献。