Department of Mathematics, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
J Theor Biol. 2010 Oct 21;266(4):614-24. doi: 10.1016/j.jtbi.2010.07.032. Epub 2010 Aug 4.
We present a multiscale, spatially distributed model of lung and airway behaviour with the goal of furthering the understanding of airway hyper-responsiveness and asthma. The model provides an initial computational framework for linking events at the cellular and molecular levels, such as Ca(2+) and crossbridge dynamics, to events at the level of the entire organ. At the organ level, parenchymal tissue is modelled using a continuum approach as a compressible, hyperelastic material in three dimensions, with expansion and recoil of lung tissue due to tidal breathing. The governing equations of finite elasticity deformation are solved using a finite element method. The airway tree is embedded in this tissue, where each airway is modelled with its own airway wall, smooth muscle and surrounding parenchyma. The tissue model is then linked to models of the crossbridge mechanics and their control by Ca(2+) dynamics, thus providing a link to molecular and cellular mechanisms in airway smooth muscle cells. By incorporating and coupling the models at these scales, we obtain a detailed, computational multiscale model incorporating important physiological phenomena associated with asthma.
我们提出了一个多尺度、空间分布的肺部和气道行为模型,旨在深入了解气道高反应性和哮喘。该模型为将细胞和分子水平(如 Ca(2+)和交联桥动力学)的事件与整个器官水平的事件联系起来提供了一个初步的计算框架。在器官水平,通过连续介质方法将实质组织建模为可压缩的三维超弹性材料,由于潮式呼吸导致肺组织的扩张和回弹。使用有限元方法求解有限弹性变形的控制方程。气道树嵌入在这种组织中,其中每个气道都用自己的气道壁、平滑肌和周围实质组织建模。然后,将组织模型与交联桥力学及其 Ca(2+)动力学控制模型联系起来,从而提供与气道平滑肌细胞中的分子和细胞机制的联系。通过在这些尺度上进行合并和耦合,我们获得了一个详细的、计算性的多尺度模型,包含与哮喘相关的重要生理现象。
J Theor Biol. 2010-8-4
Pulm Pharmacol Ther. 2011-1-19
Clin Exp Pharmacol Physiol. 1997
Respir Physiol Neurobiol. 2012-6-23
J Appl Physiol (1985). 2007-8
Monaldi Arch Chest Dis. 2001-12
Monaldi Arch Chest Dis. 2009-3
J Appl Physiol (1985). 2006-12
J Appl Physiol (1985). 2014-4-15
Diagnostics (Basel). 2024-9-7
Matrix Biol. 2020-9
Am J Physiol Lung Cell Mol Physiol. 2019-4-24
Inflamm Res. 2018-10-10
Biomech Model Mechanobiol. 2018-7-2
IEEE J Transl Eng Health Med. 2017-12-27
J Appl Physiol (1985). 2010-8
J Appl Physiol (1985). 2010-8
Respir Physiol Neurobiol. 2008-11-30
Respir Physiol Neurobiol. 2008-11-30
Biophys J. 2008-3-15
J Appl Physiol (1985). 2007-8
Am J Respir Cell Mol Biol. 2007-9
J Appl Physiol (1985). 2007-5
J Appl Physiol (1985). 2006-12