Centro de Investigaciones Biológicas (CSIC); Madrid, Spain.
Autophagy. 2013 Jul;9(7):1024-43. doi: 10.4161/auto.24483. Epub 2013 Apr 8.
We exploited the amenability of the fungus Aspergillus nidulans to genetics and live-cell microscopy to investigate autophagy. Upon nitrogen starvation, GFP-Atg8-containing pre-autophagosomal puncta give rise to cup-shaped phagophores and circular (0.9-μm diameter) autophagosomes that disappear in the vicinity of the vacuoles after their shape becomes irregular and their GFP-Atg8 fluorescence decays. This 'autophagosome cycle' gives rise to characteristic cone-shaped traces in kymographs. Autophagy does not require endosome maturation or ESCRTs, as autophagosomes fuse with vacuoles directly in a RabS (homolog of Saccharomyces cerevisiae Ypt7 and mammalian RAB7; written hereafter as RabS(RAB7))-HOPS-(homotypic fusion and vacuole protein sorting complex)-dependent manner. However, by removing RabS(RAB7) or Vps41 (a component of the HOPS complex), we show that autophagosomes may still fuse, albeit inefficiently, with the endovacuolar system in a process almost certainly mediated by RabA(RAB5)/RabB(RAB5) (yeast Vps21 homologs)-CORVET (class C core vacuole/endosome tethering complex), because acute inactivation of HbrA/Vps33, a key component of HOPS and CORVET, completely precludes access of GFP-Atg8 to vacuoles without affecting autophagosome biogenesis. Using a FYVE 2-GFP probe and endosomal PtdIns3P-depleted cells, we imaged PtdIns3P on autophagic membranes. PtdIns3P present on autophagosomes decays at late stages of the cycle, preceding fusion with the vacuole. Autophagy does not require Golgi traffic, but it is crucially dependent on RabO(RAB1). TRAPPIII-specific factor AN7311 (yeast Trs85) localizes to the phagophore assembly site (PAS) and RabO(RAB1) localizes to phagophores and autophagosomes. The Golgi and autophagy roles of RabO(RAB1) are dissociable by mutation: rabO(A136D) hyphae show relatively normal secretion at 28°C but are completely blocked in autophagy. This finding and the lack of Golgi traffic involvement pointed to the ER as one potential source of membranes for autophagy. In agreement, autophagosomes form in close association with ring-shaped omegasome-like ER structures resembling those described in mammalian cells.
我们利用真菌构巢曲霉(Aspergillus nidulans)易于进行遗传学和活细胞显微镜研究的特点,来研究自噬作用。在氮饥饿条件下,GFP-Atg8 包含的前自噬体点状结构形成杯状的吞噬体,然后形成直径为 0.9μm 的圆形自噬体。自噬体在接近液泡时形状变得不规则,GFP-Atg8 荧光强度减弱,最后消失。这种“自噬体循环”在动图中产生特征性的锥形痕迹。自噬作用不需要内体成熟或 ESCRTs,因为自噬体直接与液泡融合,融合过程依赖 RabS(酿酒酵母 Ypt7 和哺乳动物 RAB7 的同源物;以下简称 RabS(RAB7))-HOPS-(同源融合和液泡蛋白分选复合物)。然而,通过去除 RabS(RAB7)或 Vps41(HOPS 复合物的一个组成部分),我们发现自噬体仍可能与内体系统融合,尽管效率较低,但这一过程几乎肯定是由 RabA(RAB5)/RabB(RAB5)(酵母 Vps21 同源物)-CORVET(C 类核心液泡/内体连接复合物)介导的,因为急性失活 HbrA/Vps33(HOPS 和 CORVET 的关键组成部分)完全阻止 GFP-Atg8 进入液泡,而不影响自噬体的生物发生。我们使用 FYVE 2-GFP 探针和内体 PtdIns3P 耗尽的细胞,来观察自噬膜上的 PtdIns3P。自噬体上的 PtdIns3P 在循环的后期阶段衰减,先于与液泡融合。自噬作用不需要高尔基体运输,但它严重依赖 RabO(RAB1)。TRAPPIII 特异性因子 AN7311(酵母 Trs85)定位于吞噬体组装位点(PAS),RabO(RAB1)定位于吞噬体和自噬体。通过突变可以将 RabO(RAB1)的高尔基体和自噬作用分开:rabO(A136D)菌丝在 28°C 时相对正常分泌,但完全不能进行自噬作用。这一发现以及高尔基体运输参与的缺乏,指向内质网作为自噬体膜的一个潜在来源。与此一致的是,自噬体与环形类 omega 体样内质网结构密切相关形成,这种结构类似于在哺乳动物细胞中描述的结构。