Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, University of Sydney, NSW 2006, Australia.
BMC Bioinformatics. 2013 Jun 2;14:173. doi: 10.1186/1471-2105-14-173.
Segmenting cell nuclei in microscopic images has become one of the most important routines in modern biological applications. With the vast amount of data, automatic localization, i.e. detection and segmentation, of cell nuclei is highly desirable compared to time-consuming manual processes. However, automated segmentation is challenging due to large intensity inhomogeneities in the cell nuclei and the background.
We present a new method for automated progressive localization of cell nuclei using data-adaptive models that can better handle the inhomogeneity problem. We perform localization in a three-stage approach: first identify all interest regions with contrast-enhanced salient region detection, then process the clusters to identify true cell nuclei with probability estimation via feature-distance profiles of reference regions, and finally refine the contours of detected regions with regional contrast-based graphical model. The proposed region-based progressive localization (RPL) method is evaluated on three different datasets, with the first two containing grayscale images, and the third one comprising of color images with cytoplasm in addition to cell nuclei. We demonstrate performance improvement over the state-of-the-art. For example, compared to the second best approach, on the first dataset, our method achieves 2.8 and 3.7 reduction in Hausdorff distance and false negatives; on the second dataset that has larger intensity inhomogeneity, our method achieves 5% increase in Dice coefficient and Rand index; on the third dataset, our method achieves 4% increase in object-level accuracy.
To tackle the intensity inhomogeneities in cell nuclei and background, a region-based progressive localization method is proposed for cell nuclei localization in fluorescence microscopy images. The RPL method is demonstrated highly effective on three different public datasets, with on average 3.5% and 7% improvement of region- and contour-based segmentation performance over the state-of-the-art.
在现代生物学应用中,对显微镜图像中的细胞核进行分割已成为最重要的常规操作之一。与耗时的手动过程相比,大量数据需要自动定位,即检测和分割细胞核。然而,由于细胞核和背景的强度不均匀性较大,自动分割具有挑战性。
我们提出了一种使用数据自适应模型的自动逐步定位细胞核的新方法,该方法可以更好地处理不均匀性问题。我们采用三阶段方法进行定位:首先使用对比度增强的显著区域检测识别所有感兴趣区域,然后通过参考区域的特征距离轮廓进行概率估计来处理聚类以识别真实的细胞核,最后使用基于区域对比度的图形模型细化检测区域的轮廓。所提出的基于区域的渐进式定位(RPL)方法在三个不同的数据集上进行了评估,其中前两个包含灰度图像,第三个包含除细胞核外还有细胞质的彩色图像。我们证明了该方法在性能上的改进。例如,与最先进的方法相比,在第一个数据集上,我们的方法在 Hausdorff 距离和假阴性方面分别减少了 2.8 和 3.7;在第二个具有更大强度不均匀性的数据集上,我们的方法在 Dice 系数和 Rand 指数方面提高了 5%;在第三个数据集上,我们的方法在对象级精度方面提高了 4%。
为了解决细胞核和背景中的强度不均匀性,我们提出了一种基于区域的逐步定位方法,用于荧光显微镜图像中的细胞核定位。RPL 方法在三个不同的公共数据集上表现出高度的有效性,在基于区域和基于轮廓的分割性能方面平均提高了 3.5%和 7%。