Suppr超能文献

利用区域间和区域内判别信息对荧光显微镜图像中的细胞核进行分割。

Cell nuclei segmentation in fluorescence microscopy images using inter- and intra-region discriminative information.

作者信息

Song Yang, Cai Weidong, Feng David Dagan, Chen Mei

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6087-90. doi: 10.1109/EMBC.2013.6610941.

Abstract

Automated segmentation of cell nuclei in microscopic images is critical to high throughput analysis of the ever increasing amount of data. Although cell nuclei are generally visually distinguishable for human, automated segmentation faces challenges when there is significant intensity inhomogeneity among cell nuclei or in the background. In this paper, we propose an effective method for automated cell nucleus segmentation using a three-step approach. It first obtains an initial segmentation by extracting salient regions in the image, then reduces false positives using inter-region feature discrimination, and finally refines the boundary of the cell nuclei using intra-region contrast information. This method has been evaluated on two publicly available datasets of fluorescence microscopic images with 4009 cells, and has achieved superior performance compared to popular state of the art methods using established metrics.

摘要

在微观图像中对细胞核进行自动分割对于高通量分析日益增长的数据量至关重要。尽管细胞核对于人类来说通常在视觉上是可区分的,但当细胞核之间或背景中存在显著的强度不均匀性时,自动分割面临挑战。在本文中,我们提出了一种使用三步法进行自动细胞核分割的有效方法。它首先通过提取图像中的显著区域获得初始分割,然后使用区域间特征判别减少误报,最后使用区域内对比度信息细化细胞核边界。该方法已在两个包含4009个细胞的荧光显微镜图像公开数据集上进行了评估,并且与使用既定指标的流行的现有方法相比,取得了优异的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验