Suppr超能文献

基于与光学相关特征的半监督分类的相差显微镜图像中的细胞分割。

Cell segmentation in phase contrast microscopy images via semi-supervised classification over optics-related features.

机构信息

Department of Electronic Engineering, Shanghai Jiaotong University, China; The Robotics Institute, Carnegie Mellon University, USA.

出版信息

Med Image Anal. 2013 Oct;17(7):746-65. doi: 10.1016/j.media.2013.04.004. Epub 2013 Apr 29.

Abstract

Phase-contrast microscopy is one of the most common and convenient imaging modalities to observe long-term multi-cellular processes, which generates images by the interference of lights passing through transparent specimens and background medium with different retarded phases. Despite many years of study, computer-aided phase contrast microscopy analysis on cell behavior is challenged by image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose (1) a phase contrast microscopy image restoration method that produces phase retardation features, which are intrinsic features of phase contrast microscopy, and (2) a semi-supervised learning based algorithm for cell segmentation, which is a fundamental task for various cell behavior analysis. Specifically, the image formation process of phase contrast microscopy images is first computationally modeled with a dictionary of diffraction patterns; as a result, each pixel of a phase contrast microscopy image is represented by a linear combination of the bases, which we call phase retardation features. Images are then partitioned into phase-homogeneous atoms by clustering neighboring pixels with similar phase retardation features. Consequently, cell segmentation is performed via a semi-supervised classification technique over the phase-homogeneous atoms. Experiments demonstrate that the proposed approach produces quality segmentation of individual cells and outperforms previous approaches.

摘要

相衬显微镜是观察长期多细胞过程的最常用和最方便的成像方式之一,它通过穿过透明标本和具有不同延迟相位的背景介质的光的干涉产生图像。尽管经过多年的研究,但由于相衬光学产生的图像质量和伪影,计算机辅助相衬显微镜分析细胞行为仍面临挑战。为了解决这些未解决的挑战,作者提出了(1)一种相衬显微镜图像恢复方法,该方法可以产生相延迟特征,这是相衬显微镜的固有特征;(2)一种基于半监督学习的细胞分割算法,这是各种细胞行为分析的基本任务。具体来说,首先通过衍射模式字典对相衬显微镜图像的形成过程进行计算建模;结果,相衬显微镜图像的每个像素都由基的线性组合表示,我们称之为相延迟特征。然后通过对具有相似相延迟特征的相邻像素进行聚类,将图像分割为具有相同相位的原子。因此,通过对具有相同相位的原子进行半监督分类技术来进行细胞分割。实验表明,该方法能够对单个细胞进行高质量的分割,并且优于以前的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验