Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67010 Coppito, L'Aquila, Italy.
J Chromatogr A. 2013 Jul 12;1298:118-31. doi: 10.1016/j.chroma.2013.05.018. Epub 2013 May 13.
In this paper, we predict the retention of polybrominated diphenyl ethers (PBDEs) in capillary gas-chromatography (GC) within a useful range of separation conditions. In a first stage of this study, quantitative structure-retention relationships (QSRRs) of PBDEs in six stationary phases with different polarity are established. The single-column QSRR models are generated using the retention data of 126 PBDE congeners by multilinear regression (MLR) coupled to genetic algorithm variable selection applied to a large set of theoretical molecular descriptors of different classes. A quite accurate fitting of experimental retentions is obtained for each of the six GC columns adopting five molecular descriptors. In a further step of this work six molecular descriptors were extracted within the set of molecular descriptors (17 variables) involved in the various single-column QSRRs. The selected molecular descriptors are combined with observed retentions of ten representative PBDEs, adopted as descriptors of the GC system. These quantities are considered as the independent variables of a multiple-column retention model able to simultaneously relate GC retention to PBDE molecular structure and kind of column. The quantitative structure/column-retention relationship is established using a multi-layer artificial neural network (ANN) as regression tool. To optimise the ANN model, a validation set is generated by selecting two out of the six calibration columns. Splitting of columns between training and validation sets, as well as selection of PBDE congeners to be used as column descriptors, is performed with the help of a principal component analysis on the retention data. Cross-column predictive performance of the final model is tested on a large external set consisting of retention data of 180 PBDEs collected in four separation conditions different from those considered in model calibration (different columns and/or temperature program).
本文预测了在一定分离条件范围内,多溴二苯醚(PBDEs)在毛细管气相色谱(GC)中的保留情况。在该研究的第一阶段,建立了六种不同极性固定相上 PBDEs 的定量结构保留关系(QSRR)。采用多元线性回归(MLR)结合遗传算法变量选择,对不同类别的大量理论分子描述符进行处理,为 126 种 PBDE 同系物的保留数据生成了单柱 QSRR 模型。对于 6 根 GC 柱,采用 5 个分子描述符,对每个模型都获得了实验保留值的较高拟合度。在该工作的进一步步骤中,从各种单柱 QSRR 中涉及的分子描述符(17 个变量)中提取了 6 个分子描述符。选择的分子描述符与 10 种代表性 PBDE 的观察保留值相结合,作为 GC 系统的描述符。这些量被认为是能够同时将 GC 保留与 PBDE 分子结构和柱种类联系起来的多柱保留模型的独立变量。使用多层人工神经网络(ANN)作为回归工具建立定量结构/柱保留关系。为了优化 ANN 模型,通过从 6 根校准柱中选择两根,生成了一个验证集。柱的划分和验证集的选择,以及用于柱描述符的 PBDE 同系物的选择,都是通过对保留数据进行主成分分析来完成的。在一个由在四个与模型校准条件不同的分离条件下收集的 180 种 PBDE 的保留数据组成的大型外部数据集上,对最终模型的跨柱预测性能进行了测试(不同的柱和/或温度程序)。