Suppr超能文献

饱和酯类气相色谱保留指数的跨柱预测

Cross-column prediction of gas-chromatographic retention indices of saturated esters.

作者信息

D'Archivio Angelo Antonio, Maggi Maria Anna, Ruggieri Fabrizio

机构信息

Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito, L'Aquila, Italy.

Hortus Novus, Via Collepietro, 67100 L'Aquila, Italy.

出版信息

J Chromatogr A. 2014 Aug 15;1355:269-77. doi: 10.1016/j.chroma.2014.06.002. Epub 2014 Jun 6.

Abstract

We combine computational molecular descriptors and variables related with the gas-chromatographic stationary phase into a comprehensive model able to predict the retention of solutes in external columns. To explore the quality of various approaches based on alternative column descriptors, we analyse the Kováts retention indices (RIs) of 90 saturated esters collected with seven columns of different polarity (SE-30, OV-7, DC-710, OV-25, XE-60, OV-225 and Silar-5CP). Cross-column retention prediction is evaluated on an internal validation set consisting of data of 40 selected esters collected with each of the seven columns, sequentially excluded from calibration. The molecular descriptors are identified by a genetic algorithm variable selection method applied to a large set of non-empirical structural quantities aimed at finding the best multi-linear quantitative structure-retention relationship (QSRR) for the column OV-25 having intermediate polarity. To describe the columns, we consider the sum of the first five McReynolds phase constants and, alternatively, the coefficients of the corresponding QSRRs. Moreover, the mean RI value for the subset of esters used in QSRR calibration or RIs of a few selected compounds are used as column descriptors. For each combination of solute and column descriptors, the retention model is generated both by multi-linear regression and artificial neural network regression.

摘要

我们将计算分子描述符和与气相色谱固定相相关的变量结合到一个综合模型中,该模型能够预测溶质在外部色谱柱中的保留情况。为了探究基于不同色谱柱描述符的各种方法的质量,我们分析了用七种不同极性的色谱柱(SE-30、OV-7、DC-710、OV-25、XE-60、OV-225和Silar-5CP)收集的90种饱和酯的科瓦茨保留指数(RIs)。在一个内部验证集上评估跨柱保留预测,该验证集由用这七种色谱柱分别收集的40种选定酯的数据组成,这些数据在标定过程中依次被排除。分子描述符通过遗传算法变量选择方法来识别,该方法应用于大量非经验结构量,旨在为具有中等极性的OV-25色谱柱找到最佳的多线性定量结构-保留关系(QSRR)。为了描述色谱柱,我们考虑前五个麦克雷诺兹相常数的总和,以及相应QSRR的系数。此外,QSRR标定中使用的酯子集的平均RI值或几种选定化合物的RI值用作色谱柱描述符。对于溶质和色谱柱描述符的每种组合,通过多线性回归和人工神经网络回归生成保留模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验