Suppr超能文献

用于发现小分子配体的生物物理筛选

Biophysical screening for the discovery of small-molecule ligands.

作者信息

Ciulli Alessio

机构信息

College of Life Sciences, University of Dundee, Dundee, UK.

出版信息

Methods Mol Biol. 2013;1008:357-88. doi: 10.1007/978-1-62703-398-5_13.

Abstract

Discovering small-molecule chemical probes of protein function has great potential to elucidate biological pathways and to provide early-stage proof-of-concept for target validation. Discovery of such probes therefore underpins many of the chemical biology and drug discovery efforts in both academia and the pharmaceutical industry. The process generally begins with screening small molecules to identify bona fide "hits" that bind non-covalently to a target protein. This chapter is concerned with the application of biophysical and structural techniques to small-molecule ligand screening, and with the validation of hits from both structural (binding mode) and energetic (binding affinity) stand-points. The methods discussed include differential scanning fluorimetry (thermal shift), fluorescence polarization (FP), surface plasmon resonance, ligand-observed NMR spectroscopy, isothermal titration calorimetry, and protein X-ray crystallography. The principles of these techniques and the fundamental nature of the observables used to detect macromolecule-ligand binding are briefly outlined. The practicalities, advantages, and disadvantages of each technique are described, particularly in the context of detecting weak affinities, as relevant to fragment screening. Fluorescence-based methods, which offer an attractive combination of high throughput and low cost are discussed in detail. It is argued that applying a combination of different methods provides the most robust and effective way to identify high-quality starting points for follow-up medicinal chemistry and to build structure-activity relationships that better inform effective development of high-quality, cell-active chemical probes by structure-based drug design.

摘要

发现蛋白质功能的小分子化学探针对于阐明生物途径以及为靶点验证提供早期概念验证具有巨大潜力。因此,此类探针的发现是学术界和制药行业许多化学生物学和药物发现工作的基础。该过程通常始于筛选小分子,以识别与目标蛋白非共价结合的真正“命中”分子。本章关注生物物理和结构技术在小分子配体筛选中的应用,以及从结构(结合模式)和能量(结合亲和力)角度对命中分子的验证。所讨论的方法包括差示扫描荧光法(热位移)、荧光偏振(FP)、表面等离子体共振、配体观测核磁共振光谱、等温滴定量热法和蛋白质X射线晶体学。简要概述了这些技术的原理以及用于检测大分子-配体结合的可观测物的基本性质。描述了每种技术的实用性、优点和缺点,特别是在检测与片段筛选相关的弱亲和力方面。详细讨论了基于荧光的方法,其具有高通量和低成本的诱人组合。有人认为,应用不同方法的组合为识别后续药物化学的高质量起点以及建立构效关系提供了最可靠和有效的方法,从而通过基于结构的药物设计更好地指导高质量、细胞活性化学探针的有效开发。

相似文献

1
Biophysical screening for the discovery of small-molecule ligands.
Methods Mol Biol. 2013;1008:357-88. doi: 10.1007/978-1-62703-398-5_13.
2
Mass spectrometry for fragment screening.
Essays Biochem. 2017 Nov 8;61(5):465-473. doi: 10.1042/EBC20170071.
3
Biophysical methods in drug discovery from small molecule to pharmaceutical.
Methods Mol Biol. 2013;1008:327-55. doi: 10.1007/978-1-62703-398-5_12.
4
Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12984-9. doi: 10.1073/pnas.1304045110. Epub 2013 Jul 19.
5
A three-stage biophysical screening cascade for fragment-based drug discovery.
Nat Protoc. 2013 Nov;8(11):2309-24. doi: 10.1038/nprot.2013.130. Epub 2013 Oct 24.
6
Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: Application to Hsp90.
Eur J Pharm Sci. 2015 Aug 30;76:83-94. doi: 10.1016/j.ejps.2015.05.001. Epub 2015 May 4.
8
Hit-to-Lead: Hit Validation and Assessment.
Methods Enzymol. 2018;610:265-309. doi: 10.1016/bs.mie.2018.09.022. Epub 2018 Oct 25.
9
A Guide to Run Affinity Screens Using Differential Scanning Fluorimetry and Surface Plasmon Resonance Assays.
Methods Enzymol. 2018;610:135-165. doi: 10.1016/bs.mie.2018.09.015. Epub 2018 Oct 26.
10
High-Throughput Screening by Nuclear Magnetic Resonance (HTS by NMR) for the Identification of PPIs Antagonists.
Curr Top Med Chem. 2015;15(20):2032-42. doi: 10.2174/1568026615666150519102459.

引用本文的文献

3
Fluorescence-Based Protein Stability Monitoring-A Review.
Int J Mol Sci. 2024 Feb 1;25(3):1764. doi: 10.3390/ijms25031764.
4
Navigating the Expansive Landscapes of Soft Materials: A User Guide for High-Throughput Workflows.
ACS Polym Au. 2023 Dec 5;3(6):406-427. doi: 10.1021/acspolymersau.3c00025. eCollection 2023 Dec 13.
8
Real-Time Cellular Thermal Shift Assay to Monitor Target Engagement.
ACS Chem Biol. 2022 Sep 16;17(9):2471-2482. doi: 10.1021/acschembio.2c00334. Epub 2022 Sep 1.
10
Aptamer based point of care diagnostic for the detection of food allergens.
Sci Rep. 2022 Jan 25;12(1):1303. doi: 10.1038/s41598-022-05265-0.

本文引用的文献

1
Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy.
Angew Chem Int Ed Engl. 1999 Jun 14;38(12):1784-1788. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q.
2
Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction.
J Am Chem Soc. 2012 Mar 14;134(10):4465-8. doi: 10.1021/ja209924v. Epub 2012 Feb 27.
3
Bromodomain-peptide displacement assays for interactome mapping and inhibitor discovery.
Mol Biosyst. 2011 Oct;7(10):2899-908. doi: 10.1039/c1mb05099k. Epub 2011 Aug 1.
4
Introduction to fragment-based drug discovery.
Top Curr Chem. 2012;317:1-32. doi: 10.1007/128_2011_180.
5
The rise of fragment-based drug discovery.
Nat Chem. 2009 Jun;1(3):187-92. doi: 10.1038/nchem.217.
6
Protein thermal shifts to identify low molecular weight fragments.
Methods Enzymol. 2011;493:277-98. doi: 10.1016/B978-0-12-381274-2.00011-X.
7
Impact of high-throughput screening in biomedical research.
Nat Rev Drug Discov. 2011 Mar;10(3):188-95. doi: 10.1038/nrd3368.
8
Targeting the undruggable proteome: the small molecules of my dreams.
Chem Biol. 2010 Jun 25;17(6):551-5. doi: 10.1016/j.chembiol.2010.05.011.
9
The art of the chemical probe.
Nat Chem Biol. 2010 Mar;6(3):159-161. doi: 10.1038/nchembio.296.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验