Ciulli Alessio
College of Life Sciences, University of Dundee, Dundee, UK.
Methods Mol Biol. 2013;1008:357-88. doi: 10.1007/978-1-62703-398-5_13.
Discovering small-molecule chemical probes of protein function has great potential to elucidate biological pathways and to provide early-stage proof-of-concept for target validation. Discovery of such probes therefore underpins many of the chemical biology and drug discovery efforts in both academia and the pharmaceutical industry. The process generally begins with screening small molecules to identify bona fide "hits" that bind non-covalently to a target protein. This chapter is concerned with the application of biophysical and structural techniques to small-molecule ligand screening, and with the validation of hits from both structural (binding mode) and energetic (binding affinity) stand-points. The methods discussed include differential scanning fluorimetry (thermal shift), fluorescence polarization (FP), surface plasmon resonance, ligand-observed NMR spectroscopy, isothermal titration calorimetry, and protein X-ray crystallography. The principles of these techniques and the fundamental nature of the observables used to detect macromolecule-ligand binding are briefly outlined. The practicalities, advantages, and disadvantages of each technique are described, particularly in the context of detecting weak affinities, as relevant to fragment screening. Fluorescence-based methods, which offer an attractive combination of high throughput and low cost are discussed in detail. It is argued that applying a combination of different methods provides the most robust and effective way to identify high-quality starting points for follow-up medicinal chemistry and to build structure-activity relationships that better inform effective development of high-quality, cell-active chemical probes by structure-based drug design.
发现蛋白质功能的小分子化学探针对于阐明生物途径以及为靶点验证提供早期概念验证具有巨大潜力。因此,此类探针的发现是学术界和制药行业许多化学生物学和药物发现工作的基础。该过程通常始于筛选小分子,以识别与目标蛋白非共价结合的真正“命中”分子。本章关注生物物理和结构技术在小分子配体筛选中的应用,以及从结构(结合模式)和能量(结合亲和力)角度对命中分子的验证。所讨论的方法包括差示扫描荧光法(热位移)、荧光偏振(FP)、表面等离子体共振、配体观测核磁共振光谱、等温滴定量热法和蛋白质X射线晶体学。简要概述了这些技术的原理以及用于检测大分子-配体结合的可观测物的基本性质。描述了每种技术的实用性、优点和缺点,特别是在检测与片段筛选相关的弱亲和力方面。详细讨论了基于荧光的方法,其具有高通量和低成本的诱人组合。有人认为,应用不同方法的组合为识别后续药物化学的高质量起点以及建立构效关系提供了最可靠和有效的方法,从而通过基于结构的药物设计更好地指导高质量、细胞活性化学探针的有效开发。